File size: 25,239 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
import os
import sys
import re
import six
import math
import lmdb
import json
import torch
from natsort import natsorted
from PIL import Image
import numpy as np
from torch.utils.data import Dataset, ConcatDataset, Subset
from torch._utils import _accumulate
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
class Batch_Balanced_Dataset(object):
def __init__(self, opt):
"""
Modulate the data ratio in the batch.
For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5",
the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST.
"""
log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
dashed_line = '-' * 80
print(dashed_line)
log.write(dashed_line + '\n')
print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}')
log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n')
assert len(opt.select_data) == len(opt.batch_ratio)
_AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, augumentation=True)
self.data_loader_list = []
self.dataloader_iter_list = []
batch_size_list = []
Total_batch_size = 0
for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio):
_batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1)
print(dashed_line)
log.write(dashed_line + '\n')
_dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d])
total_number_dataset = len(_dataset)
log.write(_dataset_log)
"""
The total number of data can be modified with opt.total_data_usage_ratio.
ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage.
See 4.2 section in our paper.
"""
number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio))
dataset_split = [number_dataset, total_number_dataset - number_dataset]
indices = range(total_number_dataset)
_dataset, _ = [Subset(_dataset, indices[offset - length:offset])
for offset, length in zip(_accumulate(dataset_split), dataset_split)]
selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n'
selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}'
print(selected_d_log)
log.write(selected_d_log + '\n')
batch_size_list.append(str(_batch_size))
Total_batch_size += _batch_size
_data_loader = torch.utils.data.DataLoader(
_dataset, batch_size=_batch_size,
shuffle=True,
num_workers=int(opt.workers),
collate_fn=_AlignCollate, pin_memory=True)
self.data_loader_list.append(_data_loader)
self.dataloader_iter_list.append(iter(_data_loader))
Total_batch_size_log = f'{dashed_line}\n'
batch_size_sum = '+'.join(batch_size_list)
Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n'
Total_batch_size_log += f'{dashed_line}'
opt.batch_size = Total_batch_size
print(Total_batch_size_log)
log.write(Total_batch_size_log + '\n')
log.close()
def get_batch(self):
balanced_batch_images = []
balanced_batch_texts = []
for i, data_loader_iter in enumerate(self.dataloader_iter_list):
try:
datum = data_loader_iter.next()
image, text = datum[0], datum[1]
balanced_batch_images.append(image)
balanced_batch_texts += text
except StopIteration:
self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
datum = self.dataloader_iter_list[i].next()
image, text = datum[0], datum[1]
balanced_batch_images.append(image)
balanced_batch_texts += text
except ValueError as e:
print(e)
pass
except Exception as e:
print(e)
raise e
assert len(balanced_batch_images) > 0
balanced_batch_images = torch.cat(balanced_batch_images, 0)
return balanced_batch_images, balanced_batch_texts
def hierarchical_dataset(root, opt, select_data='/'):
""" select_data='/' contains all sub-directory of root directory """
dataset_list = []
dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}'
print(dataset_log)
dataset_log += '\n'
Dataset = LmdbDataset
if opt.db_type == 'xmlmdb':
Dataset = XMLLmdbDataset
elif opt.db_type == 'raw':
Dataset = RawDataset
for dirpath, dirnames, filenames in os.walk(root+'/'):
if not dirnames:
select_flag = False
for selected_d in select_data:
if selected_d in dirpath:
select_flag = True
break
if select_flag:
dataset = Dataset(dirpath, opt)
sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}'
print(sub_dataset_log)
dataset_log += f'{sub_dataset_log}\n'
dataset_list.append(dataset)
concatenated_dataset = ConcatDataset(dataset_list)
return concatenated_dataset, dataset_log
class LmdbDataset(Dataset):
def __init__(self, root, opt):
self.root = root
self.opt = opt
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
if not self.env:
print('cannot create lmdb from %s' % (root))
sys.exit(0)
with self.env.begin(write=False) as txn:
nSamples = int(txn.get('num-samples'.encode()))
self.nSamples = nSamples
if not hasattr(self.opt, 'data_filtering_off') or self.opt.data_filtering_off:
# for fast check or benchmark evaluation with no filtering
self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
else:
""" Filtering part
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
use --data_filtering_off and only evaluate on alphabets and digits.
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192
And if you want to evaluate them with the model trained with --sensitive option,
use --sensitive and --data_filtering_off,
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
"""
self.filtered_index_list = []
for index in range(self.nSamples):
index += 1 # lmdb starts with 1
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key)
assert label is not None, label_key
label = label.decode('utf-8')
if len(label) > self.opt.batch_max_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
out_of_char = f'[^{self.opt.character}]'
if re.search(out_of_char, label.lower()):
continue
self.filtered_index_list.append(index)
self.nSamples = len(self.filtered_index_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
index = self.filtered_index_list[index]
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8')
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if hasattr(self.opt, 'sensitive') and not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
return (img, label)
class XMLLmdbDataset(Dataset):
def __init__(self, root, opt, remove_nil_char=True):
self.root = root
self.opt = opt
self.remove_nil_char = remove_nil_char
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
if not self.env:
print('cannot create lmdb from %s' % (root))
sys.exit(0)
with self.env.begin(write=False) as txn:
nSamples = int(txn.get('n_line'.encode()))
self.nSamples = nSamples
if not hasattr(self.opt, 'data_filtering_off') or self.opt.data_filtering_off:
# for fast check or benchmark evaluation with no filtering
self.filtered_index_list = range(self.nSamples)
else:
""" Filtering part
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
use --data_filtering_off and only evaluate on alphabets and digits.
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192
And if you want to evaluate them with the model trained with --sensitive option,
use --sensitive and --data_filtering_off,
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
"""
self.filtered_index_list = []
for index in range(self.nSamples):
label_key = f'{index:09d}-label'.encode()
label = txn.get(label_key)
assert label is not None, label_key
label = label.decode('utf-8')
if len(label) > self.opt.batch_max_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
out_of_char = f'[^{self.opt.character}]'
if re.search(out_of_char, label.lower()):
continue
self.filtered_index_list.append(index)
self.nSamples = len(self.filtered_index_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
index = self.filtered_index_list[index]
with self.env.begin(write=False) as txn:
label = txn.get(f'{index:09d}-label'.encode()).decode('utf-8')
imgbuf = txn.get(f'{index:09d}-image'.encode())
direction = txn.get(f'{index:09d}-direction'.encode()).decode('utf-8')
cattr = txn.get(f'{index:09d}-cattrs'.encode())
if cattr is not None:
cattr = json.loads(cattr)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if hasattr(self.opt, 'sensitive') and not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
if self.remove_nil_char:
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '〓', label)
data = {
'label': label,
'direction': direction,
'cattrs': cattr
}
return (img, data)
class RawDataset(Dataset):
def __init__(self, root, opt):
self.opt = opt
self.image_path_list = []
for dirpath, dirnames, filenames in os.walk(root):
for name in filenames:
_, ext = os.path.splitext(name)
ext = ext.lower()
if ext == '.jpg' or ext == '.jpeg' or ext == '.png':
self.image_path_list.append(os.path.join(dirpath, name))
self.image_path_list = natsorted(self.image_path_list)
self.nSamples = len(self.image_path_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
try:
if self.opt.rgb:
img = Image.open(self.image_path_list[index]).convert('RGB') # for color image
else:
img = Image.open(self.image_path_list[index]).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
return (img, self.image_path_list[index])
class ResizeNormalize(object):
def __init__(self, size, interpolation=Image.BICUBIC):
self.size = size
self.interpolation = interpolation
self.toTensor = transforms.ToTensor()
def __call__(self, img):
img = img.resize(self.size, self.interpolation)
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
return img
class NormalizePAD(object):
def __init__(self, max_size, PAD_type='right'):
self.toTensor = transforms.ToTensor()
self.max_size = max_size
self.max_width_half = math.floor(max_size[2] / 2)
self.PAD_type = PAD_type
def __call__(self, img):
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
c, h, w = img.size()
Pad_img = torch.FloatTensor(*self.max_size).fill_(0)
Pad_img[:, :, :w] = img # right pad
# if self.max_size[2] != w: # add border Pad
# Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w)
return Pad_img
class RandomAspect(torch.nn.Module):
def __init__(self, max_variation: int):
super().__init__()
self.max_variation = max_variation
@staticmethod
def get_params(img: torch.Tensor, max_variation: int):
w, h = F._get_image_size(img)
w = torch.randint(max(w - max_variation, w // 2), w + max_variation, size=(1,)).item()
h = torch.randint(max(h - max_variation, h // 2), h + max_variation, size=(1,)).item()
return w, h
def forward(self, img):
w, h = self.get_params(img, self.max_variation)
return F.resize(img, (h, w))
class RandomPad(torch.nn.Module):
def __init__(self, max_padding: int, fill=0, padding_mode="constant"):
super().__init__()
self.max_padding = max_padding
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img: torch.Tensor, max_padding: int):
return torch.randint(0, max_padding, size=(4,)).tolist()
def forward(self, img):
pad = self.get_params(img, self.max_padding)
return F.pad(img, pad, fill=self.fill, padding_mode=self.padding_mode)
class ConstantPad(torch.nn.Module):
def __init__(self, padding: list, fill=0, padding_mode="constant"):
super().__init__()
self.padding = padding
self.fill = fill
self.padding_mode = padding_mode
def forward(self, img):
return F.pad(img, self.padding, fill=self.fill, padding_mode=self.padding_mode)
class Partially(torch.nn.Module):
def __init__(self, target_aspect):
super().__init__()
self.target_aspect = target_aspect
@staticmethod
def get_params(length: int):
return torch.randint(0, length, (1,)).item(), torch.randint(0, 2, (1,)).item()
def forward(self, img, label, cattrs):
w, h = img.size
ll = len(cattrs)
if ll == 0 or ll != len(label):
pass
# img.save(f"image_test/no_length:{label}.png")
# print('label::::::::', label, cattrs, label)
return img, label
idx, way = self.get_params(ll)
if way and 0:
i = idx = min(idx, max(ll - 3, 0))
_x1 = cattrs[idx]['X']
_x2 = cattrs[idx]['X'] + cattrs[idx]['WIDTH']
for i in reversed(range(idx, ll)):
attr = cattrs[i]
print(i)
_x2 = attr['X'] + attr['WIDTH']
asp = (_x2 - _x1) / h
if asp <= self.target_aspect:
break
print(label, label[idx:i+1], idx, i+1)
label = label[idx:i+1]
else:
i = idx = max(idx, min(3, ll - 1))
_x1 = cattrs[idx]['X']
_x2 = cattrs[idx]['X'] + cattrs[idx]['WIDTH']
for i, attr in enumerate(cattrs[:idx+1]):
_x1 = attr['X']
asp = (_x2 - _x1) / h
if asp <= self.target_aspect:
break
label = label[i:idx+1]
# return img
return F.crop(img, 0, _x1, h, _x2 - _x1), label
class Sideways(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, img, label, vert=None, cattrs=None):
if img.width > img.height * 5 and vert == '縦':
vert = '横'
elif img.height > img.width * 5 and vert == '横':
vert = '縦'
if vert == '縦' or (label is not None and vert == '横' and len(label) == 1):
if cattrs is not None:
for attr in cattrs:
attr['X'], attr['Y'] = attr['Y'], attr['X']
attr['WIDTH'], attr['HEIGHT'] = attr['HEIGHT'], attr['WIDTH']
return img.transpose(Image.ROTATE_90), label, cattrs
elif vert == '横' or (vert == '' and len(label) == 1):
return img, label, cattrs
elif vert == '右から左':
return img, label[::-1], cattrs[::-1]
else:
# img.save(f'image_test/{vert}-{label}.png')
print()
raise ValueError(f'{vert} is unknwon, {label}({len(label)})')
class AlignCollate(object):
def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, augumentation=False):
self.imgH = imgH
self.imgW = imgW
self.keep_ratio_with_pad = keep_ratio_with_pad
self.aug = augumentation
def __call__(self, batch):
preprocess = Sideways()
batch = [x for x in batch if x is not None]
data = [data for _, data in batch]
batch = [preprocess(g, data['label'], data['direction'], data['cattrs']) for g, data in batch]
batch = list(zip(*batch))
images, labels, cattrs = batch
labels = list(labels)
if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper
resized_max_w = self.imgW
input_channel = 3 if images[0].mode == 'RGB' else 1
transform0 = Partially(self.imgW / self.imgH)
transform1 = transforms.Compose([
RandomAspect(10),
RandomPad(10, fill=255),
transforms.RandomAffine(degrees=2, fill=255),
])
transform2 = transforms.Compose([
NormalizePAD((input_channel, self.imgH, resized_max_w))
])
transform3 = transforms.Compose([
transforms.GaussianBlur(3, sigma=(1e-5, 0.3)),
# transforms.Lambda(lambda g: transforms.functional.adjust_gamma(g, 0.4 + torch.rand(1) * 0.6)),
])
resized_images = []
result_labels = []
for i, (image, cattr) in enumerate(zip(images, cattrs)):
label = labels[i]
plabel = label
pimage = image
if self.aug and cattr is not None:
image, label = transform0(image, label, cattr)
# image.save(f'./image_test/{part_label}.jpg')
labels[i] = label
w, h = image.size
ratio = w / float(h)
resized_w0 = math.ceil(self.imgH * ratio)
if math.ceil(self.imgH * ratio) > self.imgW:
resized_w = self.imgW
else:
resized_w = math.ceil(self.imgH * ratio)
if self.aug:
try:
resized_image = image.resize((resized_w0, self.imgH), Image.BICUBIC)
resized_image = transform1(resized_image)
except ValueError as e:
label = plabel
image = pimage
# image.save(f"./image_test/({w},{h})({resized_w0, self.imgH}){label}.png")
# image.save(f"./image_test/{label}.png")
continue
raise e
else:
resized_image = image
resized_image = ConstantPad((10, 0), 255)(resized_image)
try:
resized_image = resized_image.resize((resized_w, self.imgH), Image.BICUBIC)
except ValueError as e:
with open('image_test/failed.txt', 'a') as f:
f.write(f"{label}\n")
# image.save(f"./image_test/{label}.png")
continue
raise e
normalized_tensor = transform2(resized_image)
if self.aug:
normalized_tensor = transform3(normalized_tensor)
resized_images.append(normalized_tensor)
# resized_image.save(f'./image_test/{self.aug}-{w:05d}-{label}.jpg')
# save_image(tensor2im(normalized_tensor), f'./image_test/{self.aug}-{w:05d}-{label}.jpg')
result_labels.append(label)
image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0)
labels = result_labels
else:
transform = ResizeNormalize((self.imgW, self.imgH))
image_tensors = [transform(image) for image in images]
image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)
return image_tensors, labels, data
def tensor2im(image_tensor, imtype=np.uint8):
image_numpy = image_tensor.cpu().float().numpy()
if image_numpy.shape[0] == 1:
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
return image_numpy.astype(imtype)
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
|