File size: 25,239 Bytes
c9019cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import os
import sys
import re
import six
import math
import lmdb
import json
import torch

from natsort import natsorted
from PIL import Image
import numpy as np
from torch.utils.data import Dataset, ConcatDataset, Subset
from torch._utils import _accumulate
import torchvision.transforms as transforms
import torchvision.transforms.functional as F


class Batch_Balanced_Dataset(object):

    def __init__(self, opt):
        """
        Modulate the data ratio in the batch.
        For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5",
        the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST.
        """
        log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
        dashed_line = '-' * 80
        print(dashed_line)
        log.write(dashed_line + '\n')
        print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}')
        log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n')
        assert len(opt.select_data) == len(opt.batch_ratio)

        _AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, augumentation=True)
        self.data_loader_list = []
        self.dataloader_iter_list = []
        batch_size_list = []
        Total_batch_size = 0
        for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio):
            _batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1)
            print(dashed_line)
            log.write(dashed_line + '\n')
            _dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d])
            total_number_dataset = len(_dataset)
            log.write(_dataset_log)

            """
            The total number of data can be modified with opt.total_data_usage_ratio.
            ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage.
            See 4.2 section in our paper.
            """
            number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio))
            dataset_split = [number_dataset, total_number_dataset - number_dataset]
            indices = range(total_number_dataset)
            _dataset, _ = [Subset(_dataset, indices[offset - length:offset])
                           for offset, length in zip(_accumulate(dataset_split), dataset_split)]
            selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n'
            selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}'
            print(selected_d_log)
            log.write(selected_d_log + '\n')
            batch_size_list.append(str(_batch_size))
            Total_batch_size += _batch_size

            _data_loader = torch.utils.data.DataLoader(
                _dataset, batch_size=_batch_size,
                shuffle=True,
                num_workers=int(opt.workers),
                collate_fn=_AlignCollate, pin_memory=True)
            self.data_loader_list.append(_data_loader)
            self.dataloader_iter_list.append(iter(_data_loader))

        Total_batch_size_log = f'{dashed_line}\n'
        batch_size_sum = '+'.join(batch_size_list)
        Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n'
        Total_batch_size_log += f'{dashed_line}'
        opt.batch_size = Total_batch_size

        print(Total_batch_size_log)
        log.write(Total_batch_size_log + '\n')
        log.close()

    def get_batch(self):
        balanced_batch_images = []
        balanced_batch_texts = []

        for i, data_loader_iter in enumerate(self.dataloader_iter_list):
            try:
                datum = data_loader_iter.next()
                image, text = datum[0], datum[1]
                balanced_batch_images.append(image)
                balanced_batch_texts += text
            except StopIteration:
                self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
                datum = self.dataloader_iter_list[i].next()
                image, text = datum[0], datum[1]
                balanced_batch_images.append(image)
                balanced_batch_texts += text
            except ValueError as e:
                print(e)
                pass
            except Exception as e:
                print(e)
                raise e

        assert len(balanced_batch_images) > 0
        balanced_batch_images = torch.cat(balanced_batch_images, 0)

        return balanced_batch_images, balanced_batch_texts


def hierarchical_dataset(root, opt, select_data='/'):
    """ select_data='/' contains all sub-directory of root directory """
    dataset_list = []
    dataset_log = f'dataset_root:    {root}\t dataset: {select_data[0]}'
    print(dataset_log)
    dataset_log += '\n'
    Dataset = LmdbDataset
    if opt.db_type == 'xmlmdb':
        Dataset = XMLLmdbDataset
    elif opt.db_type == 'raw':
        Dataset = RawDataset
    for dirpath, dirnames, filenames in os.walk(root+'/'):
        if not dirnames:
            select_flag = False
            for selected_d in select_data:
                if selected_d in dirpath:
                    select_flag = True
                    break

            if select_flag:
                dataset = Dataset(dirpath, opt)
                sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}'
                print(sub_dataset_log)
                dataset_log += f'{sub_dataset_log}\n'
                dataset_list.append(dataset)

    concatenated_dataset = ConcatDataset(dataset_list)

    return concatenated_dataset, dataset_log


class LmdbDataset(Dataset):

    def __init__(self, root, opt):

        self.root = root
        self.opt = opt
        self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
        if not self.env:
            print('cannot create lmdb from %s' % (root))
            sys.exit(0)

        with self.env.begin(write=False) as txn:
            nSamples = int(txn.get('num-samples'.encode()))
            self.nSamples = nSamples

            if not hasattr(self.opt, 'data_filtering_off') or self.opt.data_filtering_off:
                # for fast check or benchmark evaluation with no filtering
                self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
            else:
                """ Filtering part
                If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
                use --data_filtering_off and only evaluate on alphabets and digits.
                see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192

                And if you want to evaluate them with the model trained with --sensitive option,
                use --sensitive and --data_filtering_off,
                see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
                """
                self.filtered_index_list = []
                for index in range(self.nSamples):
                    index += 1  # lmdb starts with 1
                    label_key = 'label-%09d'.encode() % index
                    label = txn.get(label_key)
                    assert label is not None, label_key
                    label = label.decode('utf-8')

                    if len(label) > self.opt.batch_max_length:
                        # print(f'The length of the label is longer than max_length: length
                        # {len(label)}, {label} in dataset {self.root}')
                        continue

                    # By default, images containing characters which are not in opt.character are filtered.
                    # You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
                    out_of_char = f'[^{self.opt.character}]'
                    if re.search(out_of_char, label.lower()):
                        continue

                    self.filtered_index_list.append(index)

                self.nSamples = len(self.filtered_index_list)

    def __len__(self):
        return self.nSamples

    def __getitem__(self, index):
        assert index <= len(self), 'index range error'
        index = self.filtered_index_list[index]

        with self.env.begin(write=False) as txn:
            label_key = 'label-%09d'.encode() % index
            label = txn.get(label_key).decode('utf-8')
            img_key = 'image-%09d'.encode() % index
            imgbuf = txn.get(img_key)

            buf = six.BytesIO()
            buf.write(imgbuf)
            buf.seek(0)
            try:
                if self.opt.rgb:
                    img = Image.open(buf).convert('RGB')  # for color image
                else:
                    img = Image.open(buf).convert('L')

            except IOError:
                print(f'Corrupted image for {index}')
                # make dummy image and dummy label for corrupted image.
                if self.opt.rgb:
                    img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
                else:
                    img = Image.new('L', (self.opt.imgW, self.opt.imgH))
                label = '[dummy_label]'

            if hasattr(self.opt, 'sensitive') and not self.opt.sensitive:
                label = label.lower()

            # We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
            out_of_char = f'[^{self.opt.character}]'
            label = re.sub(out_of_char, '', label)

        return (img, label)


class XMLLmdbDataset(Dataset):

    def __init__(self, root, opt, remove_nil_char=True):

        self.root = root
        self.opt = opt
        self.remove_nil_char = remove_nil_char
        self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
        if not self.env:
            print('cannot create lmdb from %s' % (root))
            sys.exit(0)

        with self.env.begin(write=False) as txn:
            nSamples = int(txn.get('n_line'.encode()))
            self.nSamples = nSamples

            if not hasattr(self.opt, 'data_filtering_off') or self.opt.data_filtering_off:
                # for fast check or benchmark evaluation with no filtering
                self.filtered_index_list = range(self.nSamples)
            else:
                """ Filtering part
                If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
                use --data_filtering_off and only evaluate on alphabets and digits.
                see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192

                And if you want to evaluate them with the model trained with --sensitive option,
                use --sensitive and --data_filtering_off,
                see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
                """
                self.filtered_index_list = []
                for index in range(self.nSamples):
                    label_key = f'{index:09d}-label'.encode()
                    label = txn.get(label_key)
                    assert label is not None, label_key
                    label = label.decode('utf-8')

                    if len(label) > self.opt.batch_max_length:
                        # print(f'The length of the label is longer than max_length: length
                        # {len(label)}, {label} in dataset {self.root}')
                        continue

                    # By default, images containing characters which are not in opt.character are filtered.
                    # You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
                    out_of_char = f'[^{self.opt.character}]'
                    if re.search(out_of_char, label.lower()):
                        continue

                    self.filtered_index_list.append(index)

                self.nSamples = len(self.filtered_index_list)

    def __len__(self):
        return self.nSamples

    def __getitem__(self, index):
        assert index <= len(self), 'index range error'
        index = self.filtered_index_list[index]

        with self.env.begin(write=False) as txn:
            label = txn.get(f'{index:09d}-label'.encode()).decode('utf-8')
            imgbuf = txn.get(f'{index:09d}-image'.encode())
            direction = txn.get(f'{index:09d}-direction'.encode()).decode('utf-8')
            cattr = txn.get(f'{index:09d}-cattrs'.encode())
            if cattr is not None:
                cattr = json.loads(cattr)

            buf = six.BytesIO()
            buf.write(imgbuf)
            buf.seek(0)
            try:
                if self.opt.rgb:
                    img = Image.open(buf).convert('RGB')  # for color image
                else:
                    img = Image.open(buf).convert('L')

            except IOError:
                print(f'Corrupted image for {index}')
                # make dummy image and dummy label for corrupted image.
                if self.opt.rgb:
                    img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
                else:
                    img = Image.new('L', (self.opt.imgW, self.opt.imgH))
                label = '[dummy_label]'

            if hasattr(self.opt, 'sensitive') and not self.opt.sensitive:
                label = label.lower()

            # We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
            if self.remove_nil_char:
                out_of_char = f'[^{self.opt.character}]'
                label = re.sub(out_of_char, '〓', label)

        data = {
            'label': label,
            'direction': direction,
            'cattrs': cattr
        }
        return (img, data)


class RawDataset(Dataset):

    def __init__(self, root, opt):
        self.opt = opt
        self.image_path_list = []
        for dirpath, dirnames, filenames in os.walk(root):
            for name in filenames:
                _, ext = os.path.splitext(name)
                ext = ext.lower()
                if ext == '.jpg' or ext == '.jpeg' or ext == '.png':
                    self.image_path_list.append(os.path.join(dirpath, name))

        self.image_path_list = natsorted(self.image_path_list)
        self.nSamples = len(self.image_path_list)

    def __len__(self):
        return self.nSamples

    def __getitem__(self, index):

        try:
            if self.opt.rgb:
                img = Image.open(self.image_path_list[index]).convert('RGB')  # for color image
            else:
                img = Image.open(self.image_path_list[index]).convert('L')

        except IOError:
            print(f'Corrupted image for {index}')
            # make dummy image and dummy label for corrupted image.
            if self.opt.rgb:
                img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
            else:
                img = Image.new('L', (self.opt.imgW, self.opt.imgH))

        return (img, self.image_path_list[index])


class ResizeNormalize(object):

    def __init__(self, size, interpolation=Image.BICUBIC):
        self.size = size
        self.interpolation = interpolation
        self.toTensor = transforms.ToTensor()

    def __call__(self, img):
        img = img.resize(self.size, self.interpolation)
        img = self.toTensor(img)
        img.sub_(0.5).div_(0.5)
        return img


class NormalizePAD(object):

    def __init__(self, max_size, PAD_type='right'):
        self.toTensor = transforms.ToTensor()
        self.max_size = max_size
        self.max_width_half = math.floor(max_size[2] / 2)
        self.PAD_type = PAD_type

    def __call__(self, img):
        img = self.toTensor(img)
        img.sub_(0.5).div_(0.5)
        c, h, w = img.size()
        Pad_img = torch.FloatTensor(*self.max_size).fill_(0)
        Pad_img[:, :, :w] = img  # right pad
        # if self.max_size[2] != w:  # add border Pad
        #     Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w)

        return Pad_img


class RandomAspect(torch.nn.Module):
    def __init__(self, max_variation: int):
        super().__init__()
        self.max_variation = max_variation

    @staticmethod
    def get_params(img: torch.Tensor, max_variation: int):
        w, h = F._get_image_size(img)
        w = torch.randint(max(w - max_variation, w // 2), w + max_variation, size=(1,)).item()
        h = torch.randint(max(h - max_variation, h // 2), h + max_variation, size=(1,)).item()
        return w, h

    def forward(self, img):
        w, h = self.get_params(img, self.max_variation)
        return F.resize(img, (h, w))


class RandomPad(torch.nn.Module):
    def __init__(self, max_padding: int, fill=0, padding_mode="constant"):
        super().__init__()
        self.max_padding = max_padding
        self.fill = fill
        self.padding_mode = padding_mode

    @staticmethod
    def get_params(img: torch.Tensor, max_padding: int):
        return torch.randint(0, max_padding, size=(4,)).tolist()

    def forward(self, img):
        pad = self.get_params(img, self.max_padding)
        return F.pad(img, pad, fill=self.fill, padding_mode=self.padding_mode)


class ConstantPad(torch.nn.Module):
    def __init__(self, padding: list, fill=0, padding_mode="constant"):
        super().__init__()
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
        return F.pad(img, self.padding, fill=self.fill, padding_mode=self.padding_mode)


class Partially(torch.nn.Module):
    def __init__(self, target_aspect):
        super().__init__()
        self.target_aspect = target_aspect

    @staticmethod
    def get_params(length: int):
        return torch.randint(0, length, (1,)).item(), torch.randint(0, 2, (1,)).item()

    def forward(self, img, label, cattrs):
        w, h = img.size
        ll = len(cattrs)
        if ll == 0 or ll != len(label):
            pass
            # img.save(f"image_test/no_length:{label}.png")
            # print('label::::::::', label, cattrs, label)
            return img, label
        idx, way = self.get_params(ll)
        if way and 0:
            i = idx = min(idx, max(ll - 3, 0))
            _x1 = cattrs[idx]['X']
            _x2 = cattrs[idx]['X'] + cattrs[idx]['WIDTH']
            for i in reversed(range(idx, ll)):
                attr = cattrs[i]
                print(i)
                _x2 = attr['X'] + attr['WIDTH']
                asp = (_x2 - _x1) / h
                if asp <= self.target_aspect:
                    break
            print(label, label[idx:i+1], idx, i+1)
            label = label[idx:i+1]
        else:
            i = idx = max(idx, min(3, ll - 1))
            _x1 = cattrs[idx]['X']
            _x2 = cattrs[idx]['X'] + cattrs[idx]['WIDTH']
            for i, attr in enumerate(cattrs[:idx+1]):
                _x1 = attr['X']
                asp = (_x2 - _x1) / h
                if asp <= self.target_aspect:
                    break
            label = label[i:idx+1]

        # return img
        return F.crop(img, 0, _x1, h, _x2 - _x1), label


class Sideways(torch.nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, img, label, vert=None, cattrs=None):
        if img.width > img.height * 5 and vert == '縦':
            vert = '横'
        elif img.height > img.width * 5 and vert == '横':
            vert = '縦'
        if vert == '縦' or (label is not None and vert == '横' and len(label) == 1):
            if cattrs is not None:
                for attr in cattrs:
                    attr['X'], attr['Y'] = attr['Y'], attr['X']
                    attr['WIDTH'], attr['HEIGHT'] = attr['HEIGHT'], attr['WIDTH']
            return img.transpose(Image.ROTATE_90), label, cattrs
        elif vert == '横' or (vert == '' and len(label) == 1):
            return img, label, cattrs
        elif vert == '右から左':
            return img, label[::-1], cattrs[::-1]
        else:
            # img.save(f'image_test/{vert}-{label}.png')
            print()
            raise ValueError(f'{vert} is unknwon, {label}({len(label)})')


class AlignCollate(object):

    def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, augumentation=False):
        self.imgH = imgH
        self.imgW = imgW
        self.keep_ratio_with_pad = keep_ratio_with_pad
        self.aug = augumentation

    def __call__(self, batch):
        preprocess = Sideways()
        batch = [x for x in batch if x is not None]
        data = [data for _, data in batch]
        batch = [preprocess(g, data['label'], data['direction'], data['cattrs']) for g, data in batch]
        batch = list(zip(*batch))
        images, labels, cattrs = batch
        labels = list(labels)

        if self.keep_ratio_with_pad:  # same concept with 'Rosetta' paper
            resized_max_w = self.imgW
            input_channel = 3 if images[0].mode == 'RGB' else 1
            transform0 = Partially(self.imgW / self.imgH)
            transform1 = transforms.Compose([
                RandomAspect(10),
                RandomPad(10, fill=255),
                transforms.RandomAffine(degrees=2, fill=255),
            ])
            transform2 = transforms.Compose([
                NormalizePAD((input_channel, self.imgH, resized_max_w))
            ])
            transform3 = transforms.Compose([
                transforms.GaussianBlur(3, sigma=(1e-5, 0.3)),
                # transforms.Lambda(lambda g: transforms.functional.adjust_gamma(g, 0.4 + torch.rand(1) * 0.6)),
            ])

            resized_images = []
            result_labels = []
            for i, (image, cattr) in enumerate(zip(images, cattrs)):
                label = labels[i]
                plabel = label
                pimage = image

                if self.aug and cattr is not None:
                    image, label = transform0(image, label, cattr)
                    # image.save(f'./image_test/{part_label}.jpg')
                    labels[i] = label

                w, h = image.size
                ratio = w / float(h)
                resized_w0 = math.ceil(self.imgH * ratio)
                if math.ceil(self.imgH * ratio) > self.imgW:
                    resized_w = self.imgW
                else:
                    resized_w = math.ceil(self.imgH * ratio)

                if self.aug:
                    try:
                        resized_image = image.resize((resized_w0, self.imgH), Image.BICUBIC)
                        resized_image = transform1(resized_image)
                    except ValueError as e:
                        label = plabel
                        image = pimage
                        # image.save(f"./image_test/({w},{h})({resized_w0, self.imgH}){label}.png")
                        # image.save(f"./image_test/{label}.png")
                        continue
                        raise e
                else:
                    resized_image = image

                resized_image = ConstantPad((10, 0), 255)(resized_image)
                try:
                    resized_image = resized_image.resize((resized_w, self.imgH), Image.BICUBIC)
                except ValueError as e:
                    with open('image_test/failed.txt', 'a') as f:
                        f.write(f"{label}\n")
                    # image.save(f"./image_test/{label}.png")
                    continue
                    raise e
                normalized_tensor = transform2(resized_image)
                if self.aug:
                    normalized_tensor = transform3(normalized_tensor)
                resized_images.append(normalized_tensor)
                # resized_image.save(f'./image_test/{self.aug}-{w:05d}-{label}.jpg')
                # save_image(tensor2im(normalized_tensor), f'./image_test/{self.aug}-{w:05d}-{label}.jpg')
                result_labels.append(label)

            image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0)
            labels = result_labels

        else:
            transform = ResizeNormalize((self.imgW, self.imgH))
            image_tensors = [transform(image) for image in images]
            image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)

        return image_tensors, labels, data


def tensor2im(image_tensor, imtype=np.uint8):
    image_numpy = image_tensor.cpu().float().numpy()
    if image_numpy.shape[0] == 1:
        image_numpy = np.tile(image_numpy, (3, 1, 1))
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    return image_numpy.astype(imtype)


def save_image(image_numpy, image_path):
    image_pil = Image.fromarray(image_numpy)
    image_pil.save(image_path)