File size: 6,299 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import string
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from utils import CTCLabelConverter, AttnLabelConverter
from dataset import RawDataset, AlignCollate
from model import Model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def demo(opt):
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
# prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
demo_data = RawDataset(root=opt.image_folder, opt=opt) # use RawDataset
demo_loader = torch.utils.data.DataLoader(
demo_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_demo, pin_memory=True)
# predict
model.eval()
with torch.no_grad():
for image_tensors, image_path_list in demo_loader:
batch_size = image_tensors.size(0)
image = image_tensors.to(device)
# For max length prediction
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
# Select max probabilty (greedy decoding) then decode index to character
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.max(2)
# preds_index = preds_index.view(-1)
preds_str = converter.decode(preds_index, preds_size)
else:
preds = model(image, text_for_pred, is_train=False)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
log = open(f'./log_demo_result.txt', 'a')
dashed_line = '-' * 80
head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'
print(f'{dashed_line}\n{head}\n{dashed_line}')
log.write(f'{dashed_line}\n{head}\n{dashed_line}\n')
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
for img_name, pred, pred_max_prob in zip(image_path_list, preds_str, preds_max_prob):
if 'Attn' in opt.Prediction:
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
# calculate confidence score (= multiply of pred_max_prob)
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}')
log.write(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n')
log.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_folder', required=True, help='path to image_folder which contains text images')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
demo(opt)
|