3v324v23's picture
Add files
c9019cd
raw
history blame
13.2 kB
import os.path as osp
import warnings
from collections import OrderedDict
import mmcv
import numpy as np
from mmcv.utils import print_log
from terminaltables import AsciiTable
from torch.utils.data import Dataset
from mmdet.core import eval_map, eval_recalls
from .builder import DATASETS
from .pipelines import Compose
@DATASETS.register_module()
class CustomDataset(Dataset):
"""Custom dataset for detection.
The annotation format is shown as follows. The `ann` field is optional for
testing.
.. code-block:: none
[
{
'filename': 'a.jpg',
'width': 1280,
'height': 720,
'ann': {
'bboxes': <np.ndarray> (n, 4) in (x1, y1, x2, y2) order.
'labels': <np.ndarray> (n, ),
'bboxes_ignore': <np.ndarray> (k, 4), (optional field)
'labels_ignore': <np.ndarray> (k, 4) (optional field)
}
},
...
]
Args:
ann_file (str): Annotation file path.
pipeline (list[dict]): Processing pipeline.
classes (str | Sequence[str], optional): Specify classes to load.
If is None, ``cls.CLASSES`` will be used. Default: None.
data_root (str, optional): Data root for ``ann_file``,
``img_prefix``, ``seg_prefix``, ``proposal_file`` if specified.
test_mode (bool, optional): If set True, annotation will not be loaded.
filter_empty_gt (bool, optional): If set true, images without bounding
boxes of the dataset's classes will be filtered out. This option
only works when `test_mode=False`, i.e., we never filter images
during tests.
"""
CLASSES = None
def __init__(self,
ann_file,
pipeline,
classes=None,
data_root=None,
img_prefix='',
seg_prefix=None,
proposal_file=None,
test_mode=False,
filter_empty_gt=True):
self.ann_file = ann_file
self.data_root = data_root
self.img_prefix = img_prefix
self.seg_prefix = seg_prefix
self.proposal_file = proposal_file
self.test_mode = test_mode
self.filter_empty_gt = filter_empty_gt
self.CLASSES = self.get_classes(classes)
# join paths if data_root is specified
if self.data_root is not None:
if not osp.isabs(self.ann_file):
self.ann_file = osp.join(self.data_root, self.ann_file)
if not (self.img_prefix is None or osp.isabs(self.img_prefix)):
self.img_prefix = osp.join(self.data_root, self.img_prefix)
if not (self.seg_prefix is None or osp.isabs(self.seg_prefix)):
self.seg_prefix = osp.join(self.data_root, self.seg_prefix)
if not (self.proposal_file is None
or osp.isabs(self.proposal_file)):
self.proposal_file = osp.join(self.data_root,
self.proposal_file)
# load annotations (and proposals)
self.data_infos = self.load_annotations(self.ann_file)
if self.proposal_file is not None:
self.proposals = self.load_proposals(self.proposal_file)
else:
self.proposals = None
# filter images too small and containing no annotations
if not test_mode:
valid_inds = self._filter_imgs()
self.data_infos = [self.data_infos[i] for i in valid_inds]
if self.proposals is not None:
self.proposals = [self.proposals[i] for i in valid_inds]
# set group flag for the sampler
self._set_group_flag()
# processing pipeline
self.pipeline = Compose(pipeline)
def __len__(self):
"""Total number of samples of data."""
return len(self.data_infos)
def load_annotations(self, ann_file):
"""Load annotation from annotation file."""
return mmcv.load(ann_file)
def load_proposals(self, proposal_file):
"""Load proposal from proposal file."""
return mmcv.load(proposal_file)
def get_ann_info(self, idx):
"""Get annotation by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
return self.data_infos[idx]['ann']
def get_cat_ids(self, idx):
"""Get category ids by index.
Args:
idx (int): Index of data.
Returns:
list[int]: All categories in the image of specified index.
"""
return self.data_infos[idx]['ann']['labels'].astype(np.int).tolist()
def pre_pipeline(self, results):
"""Prepare results dict for pipeline."""
results['img_prefix'] = self.img_prefix
results['seg_prefix'] = self.seg_prefix
results['proposal_file'] = self.proposal_file
results['bbox_fields'] = []
results['mask_fields'] = []
results['seg_fields'] = []
def _filter_imgs(self, min_size=32):
"""Filter images too small."""
if self.filter_empty_gt:
warnings.warn(
'CustomDataset does not support filtering empty gt images.')
valid_inds = []
for i, img_info in enumerate(self.data_infos):
if min(img_info['width'], img_info['height']) >= min_size:
valid_inds.append(i)
return valid_inds
def _set_group_flag(self):
"""Set flag according to image aspect ratio.
Images with aspect ratio greater than 1 will be set as group 1,
otherwise group 0.
"""
self.flag = np.zeros(len(self), dtype=np.uint8)
for i in range(len(self)):
img_info = self.data_infos[i]
if img_info['width'] / img_info['height'] > 1:
self.flag[i] = 1
def _rand_another(self, idx):
"""Get another random index from the same group as the given index."""
pool = np.where(self.flag == self.flag[idx])[0]
return np.random.choice(pool)
def __getitem__(self, idx):
"""Get training/test data after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Training/test data (with annotation if `test_mode` is set \
True).
"""
if self.test_mode:
return self.prepare_test_img(idx)
while True:
data = self.prepare_train_img(idx)
if data is None:
idx = self._rand_another(idx)
continue
return data
def prepare_train_img(self, idx):
"""Get training data and annotations after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Training data and annotation after pipeline with new keys \
introduced by pipeline.
"""
img_info = self.data_infos[idx]
ann_info = self.get_ann_info(idx)
results = dict(img_info=img_info, ann_info=ann_info)
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
return self.pipeline(results)
def prepare_test_img(self, idx):
"""Get testing data after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Testing data after pipeline with new keys introduced by \
pipeline.
"""
img_info = self.data_infos[idx]
results = dict(img_info=img_info)
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
return self.pipeline(results)
@classmethod
def get_classes(cls, classes=None):
"""Get class names of current dataset.
Args:
classes (Sequence[str] | str | None): If classes is None, use
default CLASSES defined by builtin dataset. If classes is a
string, take it as a file name. The file contains the name of
classes where each line contains one class name. If classes is
a tuple or list, override the CLASSES defined by the dataset.
Returns:
tuple[str] or list[str]: Names of categories of the dataset.
"""
if classes is None:
return cls.CLASSES
if isinstance(classes, str):
# take it as a file path
class_names = mmcv.list_from_file(classes)
elif isinstance(classes, (tuple, list)):
class_names = classes
else:
raise ValueError(f'Unsupported type {type(classes)} of classes.')
return class_names
def format_results(self, results, **kwargs):
"""Place holder to format result to dataset specific output."""
def evaluate(self,
results,
metric='mAP',
logger=None,
proposal_nums=(100, 300, 1000),
iou_thr=0.5,
scale_ranges=None):
"""Evaluate the dataset.
Args:
results (list): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Default: None.
proposal_nums (Sequence[int]): Proposal number used for evaluating
recalls, such as recall@100, recall@1000.
Default: (100, 300, 1000).
iou_thr (float | list[float]): IoU threshold. Default: 0.5.
scale_ranges (list[tuple] | None): Scale ranges for evaluating mAP.
Default: None.
"""
if not isinstance(metric, str):
assert len(metric) == 1
metric = metric[0]
allowed_metrics = ['mAP', 'recall']
if metric not in allowed_metrics:
raise KeyError(f'metric {metric} is not supported')
annotations = [self.get_ann_info(i) for i in range(len(self))]
eval_results = OrderedDict()
iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr
if metric == 'mAP':
assert isinstance(iou_thrs, list)
mean_aps = []
for iou_thr in iou_thrs:
print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}')
mean_ap, _ = eval_map(
results,
annotations,
scale_ranges=scale_ranges,
iou_thr=iou_thr,
dataset=self.CLASSES,
logger=logger)
mean_aps.append(mean_ap)
eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3)
eval_results['mAP'] = sum(mean_aps) / len(mean_aps)
elif metric == 'recall':
gt_bboxes = [ann['bboxes'] for ann in annotations]
recalls = eval_recalls(
gt_bboxes, results, proposal_nums, iou_thr, logger=logger)
for i, num in enumerate(proposal_nums):
for j, iou in enumerate(iou_thrs):
eval_results[f'recall@{num}@{iou}'] = recalls[i, j]
if recalls.shape[1] > 1:
ar = recalls.mean(axis=1)
for i, num in enumerate(proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
return eval_results
def __repr__(self):
"""Print the number of instance number."""
dataset_type = 'Test' if self.test_mode else 'Train'
result = (f'\n{self.__class__.__name__} {dataset_type} dataset '
f'with number of images {len(self)}, '
f'and instance counts: \n')
if self.CLASSES is None:
result += 'Category names are not provided. \n'
return result
instance_count = np.zeros(len(self.CLASSES) + 1).astype(int)
# count the instance number in each image
for idx in range(len(self)):
label = self.get_ann_info(idx)['labels']
unique, counts = np.unique(label, return_counts=True)
if len(unique) > 0:
# add the occurrence number to each class
instance_count[unique] += counts
else:
# background is the last index
instance_count[-1] += 1
# create a table with category count
table_data = [['category', 'count'] * 5]
row_data = []
for cls, count in enumerate(instance_count):
if cls < len(self.CLASSES):
row_data += [f'{cls} [{self.CLASSES[cls]}]', f'{count}']
else:
# add the background number
row_data += ['-1 background', f'{count}']
if len(row_data) == 10:
table_data.append(row_data)
row_data = []
table = AsciiTable(table_data)
result += table.table
return result