|
import argparse |
|
import os.path as osp |
|
|
|
import mmcv |
|
import numpy as np |
|
from mmcv import Config, DictAction |
|
|
|
from mmdet.core.evaluation import eval_map |
|
from mmdet.core.visualization import imshow_gt_det_bboxes |
|
from mmdet.datasets import build_dataset, get_loading_pipeline |
|
|
|
|
|
def bbox_map_eval(det_result, annotation): |
|
"""Evaluate mAP of single image det result. |
|
|
|
Args: |
|
det_result (list[list]): [[cls1_det, cls2_det, ...], ...]. |
|
The outer list indicates images, and the inner list indicates |
|
per-class detected bboxes. |
|
annotation (dict): Ground truth annotations where keys of |
|
annotations are: |
|
|
|
- bboxes: numpy array of shape (n, 4) |
|
- labels: numpy array of shape (n, ) |
|
- bboxes_ignore (optional): numpy array of shape (k, 4) |
|
- labels_ignore (optional): numpy array of shape (k, ) |
|
|
|
Returns: |
|
float: mAP |
|
""" |
|
|
|
|
|
if isinstance(det_result, tuple): |
|
bbox_det_result = [det_result[0]] |
|
else: |
|
bbox_det_result = [det_result] |
|
|
|
iou_thrs = np.linspace( |
|
.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) |
|
mean_aps = [] |
|
for thr in iou_thrs: |
|
mean_ap, _ = eval_map( |
|
bbox_det_result, [annotation], iou_thr=thr, logger='silent') |
|
mean_aps.append(mean_ap) |
|
return sum(mean_aps) / len(mean_aps) |
|
|
|
|
|
class ResultVisualizer(object): |
|
"""Display and save evaluation results. |
|
|
|
Args: |
|
show (bool): Whether to show the image. Default: True |
|
wait_time (float): Value of waitKey param. Default: 0. |
|
score_thr (float): Minimum score of bboxes to be shown. |
|
Default: 0 |
|
""" |
|
|
|
def __init__(self, show=False, wait_time=0, score_thr=0): |
|
self.show = show |
|
self.wait_time = wait_time |
|
self.score_thr = score_thr |
|
|
|
def _save_image_gts_results(self, dataset, results, mAPs, out_dir=None): |
|
mmcv.mkdir_or_exist(out_dir) |
|
|
|
for mAP_info in mAPs: |
|
index, mAP = mAP_info |
|
data_info = dataset.prepare_train_img(index) |
|
|
|
|
|
filename = data_info['filename'] |
|
if data_info['img_prefix'] is not None: |
|
filename = osp.join(data_info['img_prefix'], filename) |
|
else: |
|
filename = data_info['filename'] |
|
fname, name = osp.splitext(osp.basename(filename)) |
|
save_filename = fname + '_' + str(round(mAP, 3)) + name |
|
out_file = osp.join(out_dir, save_filename) |
|
imshow_gt_det_bboxes( |
|
data_info['img'], |
|
data_info, |
|
results[index], |
|
dataset.CLASSES, |
|
show=self.show, |
|
score_thr=self.score_thr, |
|
wait_time=self.wait_time, |
|
out_file=out_file) |
|
|
|
def evaluate_and_show(self, |
|
dataset, |
|
results, |
|
topk=20, |
|
show_dir='work_dir', |
|
eval_fn=None): |
|
"""Evaluate and show results. |
|
|
|
Args: |
|
dataset (Dataset): A PyTorch dataset. |
|
results (list): Det results from test results pkl file |
|
topk (int): Number of the highest topk and |
|
lowest topk after evaluation index sorting. Default: 20 |
|
show_dir (str, optional): The filename to write the image. |
|
Default: 'work_dir' |
|
eval_fn (callable, optional): Eval function, Default: None |
|
""" |
|
|
|
assert topk > 0 |
|
if (topk * 2) > len(dataset): |
|
topk = len(dataset) // 2 |
|
|
|
if eval_fn is None: |
|
eval_fn = bbox_map_eval |
|
else: |
|
assert callable(eval_fn) |
|
|
|
prog_bar = mmcv.ProgressBar(len(results)) |
|
_mAPs = {} |
|
for i, (result, ) in enumerate(zip(results)): |
|
|
|
|
|
data_info = dataset.prepare_train_img(i) |
|
mAP = eval_fn(result, data_info['ann_info']) |
|
_mAPs[i] = mAP |
|
prog_bar.update() |
|
|
|
|
|
_mAPs = list(sorted(_mAPs.items(), key=lambda kv: kv[1])) |
|
good_mAPs = _mAPs[-topk:] |
|
bad_mAPs = _mAPs[:topk] |
|
|
|
good_dir = osp.abspath(osp.join(show_dir, 'good')) |
|
bad_dir = osp.abspath(osp.join(show_dir, 'bad')) |
|
self._save_image_gts_results(dataset, results, good_mAPs, good_dir) |
|
self._save_image_gts_results(dataset, results, bad_mAPs, bad_dir) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='MMDet eval image prediction result for each') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument( |
|
'prediction_path', help='prediction path where test pkl result') |
|
parser.add_argument( |
|
'show_dir', help='directory where painted images will be saved') |
|
parser.add_argument('--show', action='store_true', help='show results') |
|
parser.add_argument( |
|
'--wait-time', |
|
type=float, |
|
default=0, |
|
help='the interval of show (s), 0 is block') |
|
parser.add_argument( |
|
'--topk', |
|
default=20, |
|
type=int, |
|
help='saved Number of the highest topk ' |
|
'and lowest topk after index sorting') |
|
parser.add_argument( |
|
'--show-score-thr', |
|
type=float, |
|
default=0, |
|
help='score threshold (default: 0.)') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
mmcv.check_file_exist(args.prediction_path) |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
cfg.data.test.test_mode = True |
|
|
|
if cfg.get('custom_imports', None): |
|
from mmcv.utils import import_modules_from_strings |
|
import_modules_from_strings(**cfg['custom_imports']) |
|
|
|
cfg.data.test.pop('samples_per_gpu', 0) |
|
cfg.data.test.pipeline = get_loading_pipeline(cfg.data.train.pipeline) |
|
dataset = build_dataset(cfg.data.test) |
|
outputs = mmcv.load(args.prediction_path) |
|
|
|
result_visualizer = ResultVisualizer(args.show, args.wait_time, |
|
args.show_score_thr) |
|
result_visualizer.evaluate_and_show( |
|
dataset, outputs, topk=args.topk, show_dir=args.show_dir) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|