|
import argparse |
|
import time |
|
|
|
import torch |
|
from mmcv import Config, DictAction |
|
from mmcv.cnn import fuse_conv_bn |
|
from mmcv.parallel import MMDataParallel |
|
from mmcv.runner import load_checkpoint, wrap_fp16_model |
|
|
|
from mmdet.datasets import (build_dataloader, build_dataset, |
|
replace_ImageToTensor) |
|
from mmdet.models import build_detector |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='MMDet benchmark a model') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument( |
|
'--log-interval', default=50, help='interval of logging') |
|
parser.add_argument( |
|
'--fuse-conv-bn', |
|
action='store_true', |
|
help='Whether to fuse conv and bn, this will slightly increase' |
|
'the inference speed') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
if cfg.get('custom_imports', None): |
|
from mmcv.utils import import_modules_from_strings |
|
import_modules_from_strings(**cfg['custom_imports']) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
cfg.model.pretrained = None |
|
cfg.data.test.test_mode = True |
|
|
|
|
|
samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) |
|
if samples_per_gpu > 1: |
|
|
|
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) |
|
dataset = build_dataset(cfg.data.test) |
|
data_loader = build_dataloader( |
|
dataset, |
|
samples_per_gpu=1, |
|
workers_per_gpu=cfg.data.workers_per_gpu, |
|
dist=False, |
|
shuffle=False) |
|
|
|
|
|
cfg.model.train_cfg = None |
|
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) |
|
fp16_cfg = cfg.get('fp16', None) |
|
if fp16_cfg is not None: |
|
wrap_fp16_model(model) |
|
load_checkpoint(model, args.checkpoint, map_location='cpu') |
|
if args.fuse_conv_bn: |
|
model = fuse_conv_bn(model) |
|
|
|
model = MMDataParallel(model, device_ids=[0]) |
|
|
|
model.eval() |
|
|
|
|
|
num_warmup = 5 |
|
pure_inf_time = 0 |
|
|
|
|
|
for i, data in enumerate(data_loader): |
|
|
|
torch.cuda.synchronize() |
|
start_time = time.perf_counter() |
|
|
|
with torch.no_grad(): |
|
model(return_loss=False, rescale=True, **data) |
|
|
|
torch.cuda.synchronize() |
|
elapsed = time.perf_counter() - start_time |
|
|
|
if i >= num_warmup: |
|
pure_inf_time += elapsed |
|
if (i + 1) % args.log_interval == 0: |
|
fps = (i + 1 - num_warmup) / pure_inf_time |
|
print(f'Done image [{i + 1:<3}/ 2000], fps: {fps:.1f} img / s') |
|
|
|
if (i + 1) == 2000: |
|
pure_inf_time += elapsed |
|
fps = (i + 1 - num_warmup) / pure_inf_time |
|
print(f'Overall fps: {fps:.1f} img / s') |
|
break |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|