|
import argparse |
|
import copy |
|
import os |
|
import os.path as osp |
|
|
|
import mmcv |
|
import torch |
|
from mmcv import DictAction |
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel |
|
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, |
|
wrap_fp16_model) |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
from tools.analysis_tools.robustness_eval import get_results |
|
|
|
from mmdet import datasets |
|
from mmdet.apis import multi_gpu_test, set_random_seed, single_gpu_test |
|
from mmdet.core import eval_map |
|
from mmdet.datasets import build_dataloader, build_dataset |
|
from mmdet.models import build_detector |
|
|
|
|
|
def coco_eval_with_return(result_files, |
|
result_types, |
|
coco, |
|
max_dets=(100, 300, 1000)): |
|
for res_type in result_types: |
|
assert res_type in ['proposal', 'bbox', 'segm', 'keypoints'] |
|
|
|
if mmcv.is_str(coco): |
|
coco = COCO(coco) |
|
assert isinstance(coco, COCO) |
|
|
|
eval_results = {} |
|
for res_type in result_types: |
|
result_file = result_files[res_type] |
|
assert result_file.endswith('.json') |
|
|
|
coco_dets = coco.loadRes(result_file) |
|
img_ids = coco.getImgIds() |
|
iou_type = 'bbox' if res_type == 'proposal' else res_type |
|
cocoEval = COCOeval(coco, coco_dets, iou_type) |
|
cocoEval.params.imgIds = img_ids |
|
if res_type == 'proposal': |
|
cocoEval.params.useCats = 0 |
|
cocoEval.params.maxDets = list(max_dets) |
|
cocoEval.evaluate() |
|
cocoEval.accumulate() |
|
cocoEval.summarize() |
|
if res_type == 'segm' or res_type == 'bbox': |
|
metric_names = [ |
|
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', |
|
'AR100', 'ARs', 'ARm', 'ARl' |
|
] |
|
eval_results[res_type] = { |
|
metric_names[i]: cocoEval.stats[i] |
|
for i in range(len(metric_names)) |
|
} |
|
else: |
|
eval_results[res_type] = cocoEval.stats |
|
|
|
return eval_results |
|
|
|
|
|
def voc_eval_with_return(result_file, |
|
dataset, |
|
iou_thr=0.5, |
|
logger='print', |
|
only_ap=True): |
|
det_results = mmcv.load(result_file) |
|
annotations = [dataset.get_ann_info(i) for i in range(len(dataset))] |
|
if hasattr(dataset, 'year') and dataset.year == 2007: |
|
dataset_name = 'voc07' |
|
else: |
|
dataset_name = dataset.CLASSES |
|
mean_ap, eval_results = eval_map( |
|
det_results, |
|
annotations, |
|
scale_ranges=None, |
|
iou_thr=iou_thr, |
|
dataset=dataset_name, |
|
logger=logger) |
|
|
|
if only_ap: |
|
eval_results = [{ |
|
'ap': eval_results[i]['ap'] |
|
} for i in range(len(eval_results))] |
|
|
|
return mean_ap, eval_results |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='MMDet test detector') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument('--out', help='output result file') |
|
parser.add_argument( |
|
'--corruptions', |
|
type=str, |
|
nargs='+', |
|
default='benchmark', |
|
choices=[ |
|
'all', 'benchmark', 'noise', 'blur', 'weather', 'digital', |
|
'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise', |
|
'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', |
|
'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', |
|
'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur', |
|
'spatter', 'saturate' |
|
], |
|
help='corruptions') |
|
parser.add_argument( |
|
'--severities', |
|
type=int, |
|
nargs='+', |
|
default=[0, 1, 2, 3, 4, 5], |
|
help='corruption severity levels') |
|
parser.add_argument( |
|
'--eval', |
|
type=str, |
|
nargs='+', |
|
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'], |
|
help='eval types') |
|
parser.add_argument( |
|
'--iou-thr', |
|
type=float, |
|
default=0.5, |
|
help='IoU threshold for pascal voc evaluation') |
|
parser.add_argument( |
|
'--summaries', |
|
type=bool, |
|
default=False, |
|
help='Print summaries for every corruption and severity') |
|
parser.add_argument( |
|
'--workers', type=int, default=32, help='workers per gpu') |
|
parser.add_argument('--show', action='store_true', help='show results') |
|
parser.add_argument( |
|
'--show-dir', help='directory where painted images will be saved') |
|
parser.add_argument( |
|
'--show-score-thr', |
|
type=float, |
|
default=0.3, |
|
help='score threshold (default: 0.3)') |
|
parser.add_argument('--tmpdir', help='tmp dir for writing some results') |
|
parser.add_argument('--seed', type=int, default=None, help='random seed') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
parser.add_argument( |
|
'--final-prints', |
|
type=str, |
|
nargs='+', |
|
choices=['P', 'mPC', 'rPC'], |
|
default='mPC', |
|
help='corruption benchmark metric to print at the end') |
|
parser.add_argument( |
|
'--final-prints-aggregate', |
|
type=str, |
|
choices=['all', 'benchmark'], |
|
default='benchmark', |
|
help='aggregate all results or only those for benchmark corruptions') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
assert args.out or args.show or args.show_dir, \ |
|
('Please specify at least one operation (save or show the results) ' |
|
'with the argument "--out", "--show" or "show-dir"') |
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): |
|
raise ValueError('The output file must be a pkl file.') |
|
|
|
cfg = mmcv.Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
if cfg.get('custom_imports', None): |
|
from mmcv.utils import import_modules_from_strings |
|
import_modules_from_strings(**cfg['custom_imports']) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
cfg.model.pretrained = None |
|
cfg.data.test.test_mode = True |
|
if args.workers == 0: |
|
args.workers = cfg.data.workers_per_gpu |
|
|
|
|
|
if args.launcher == 'none': |
|
distributed = False |
|
else: |
|
distributed = True |
|
init_dist(args.launcher, **cfg.dist_params) |
|
|
|
|
|
if args.seed is not None: |
|
set_random_seed(args.seed) |
|
|
|
if 'all' in args.corruptions: |
|
corruptions = [ |
|
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', |
|
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', |
|
'brightness', 'contrast', 'elastic_transform', 'pixelate', |
|
'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter', |
|
'saturate' |
|
] |
|
elif 'benchmark' in args.corruptions: |
|
corruptions = [ |
|
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', |
|
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', |
|
'brightness', 'contrast', 'elastic_transform', 'pixelate', |
|
'jpeg_compression' |
|
] |
|
elif 'noise' in args.corruptions: |
|
corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise'] |
|
elif 'blur' in args.corruptions: |
|
corruptions = [ |
|
'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur' |
|
] |
|
elif 'weather' in args.corruptions: |
|
corruptions = ['snow', 'frost', 'fog', 'brightness'] |
|
elif 'digital' in args.corruptions: |
|
corruptions = [ |
|
'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' |
|
] |
|
elif 'holdout' in args.corruptions: |
|
corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate'] |
|
elif 'None' in args.corruptions: |
|
corruptions = ['None'] |
|
args.severities = [0] |
|
else: |
|
corruptions = args.corruptions |
|
|
|
rank, _ = get_dist_info() |
|
aggregated_results = {} |
|
for corr_i, corruption in enumerate(corruptions): |
|
aggregated_results[corruption] = {} |
|
for sev_i, corruption_severity in enumerate(args.severities): |
|
|
|
if corr_i > 0 and corruption_severity == 0: |
|
aggregated_results[corruption][0] = \ |
|
aggregated_results[corruptions[0]][0] |
|
continue |
|
|
|
test_data_cfg = copy.deepcopy(cfg.data.test) |
|
|
|
if corruption_severity > 0: |
|
corruption_trans = dict( |
|
type='Corrupt', |
|
corruption=corruption, |
|
severity=corruption_severity) |
|
|
|
|
|
test_data_cfg['pipeline'].insert(1, corruption_trans) |
|
|
|
|
|
print(f'\nTesting {corruption} at severity {corruption_severity}') |
|
|
|
|
|
|
|
|
|
dataset = build_dataset(test_data_cfg) |
|
data_loader = build_dataloader( |
|
dataset, |
|
samples_per_gpu=1, |
|
workers_per_gpu=args.workers, |
|
dist=distributed, |
|
shuffle=False) |
|
|
|
|
|
cfg.model.train_cfg = None |
|
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) |
|
fp16_cfg = cfg.get('fp16', None) |
|
if fp16_cfg is not None: |
|
wrap_fp16_model(model) |
|
checkpoint = load_checkpoint( |
|
model, args.checkpoint, map_location='cpu') |
|
|
|
|
|
if 'CLASSES' in checkpoint.get('meta', {}): |
|
model.CLASSES = checkpoint['meta']['CLASSES'] |
|
else: |
|
model.CLASSES = dataset.CLASSES |
|
|
|
if not distributed: |
|
model = MMDataParallel(model, device_ids=[0]) |
|
show_dir = args.show_dir |
|
if show_dir is not None: |
|
show_dir = osp.join(show_dir, corruption) |
|
show_dir = osp.join(show_dir, str(corruption_severity)) |
|
if not osp.exists(show_dir): |
|
osp.makedirs(show_dir) |
|
outputs = single_gpu_test(model, data_loader, args.show, |
|
show_dir, args.show_score_thr) |
|
else: |
|
model = MMDistributedDataParallel( |
|
model.cuda(), |
|
device_ids=[torch.cuda.current_device()], |
|
broadcast_buffers=False) |
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir) |
|
|
|
if args.out and rank == 0: |
|
eval_results_filename = ( |
|
osp.splitext(args.out)[0] + '_results' + |
|
osp.splitext(args.out)[1]) |
|
mmcv.dump(outputs, args.out) |
|
eval_types = args.eval |
|
if cfg.dataset_type == 'VOCDataset': |
|
if eval_types: |
|
for eval_type in eval_types: |
|
if eval_type == 'bbox': |
|
test_dataset = mmcv.runner.obj_from_dict( |
|
cfg.data.test, datasets) |
|
logger = 'print' if args.summaries else None |
|
mean_ap, eval_results = \ |
|
voc_eval_with_return( |
|
args.out, test_dataset, |
|
args.iou_thr, logger) |
|
aggregated_results[corruption][ |
|
corruption_severity] = eval_results |
|
else: |
|
print('\nOnly "bbox" evaluation \ |
|
is supported for pascal voc') |
|
else: |
|
if eval_types: |
|
print(f'Starting evaluate {" and ".join(eval_types)}') |
|
if eval_types == ['proposal_fast']: |
|
result_file = args.out |
|
else: |
|
if not isinstance(outputs[0], dict): |
|
result_files = dataset.results2json( |
|
outputs, args.out) |
|
else: |
|
for name in outputs[0]: |
|
print(f'\nEvaluating {name}') |
|
outputs_ = [out[name] for out in outputs] |
|
result_file = args.out |
|
+ f'.{name}' |
|
result_files = dataset.results2json( |
|
outputs_, result_file) |
|
eval_results = coco_eval_with_return( |
|
result_files, eval_types, dataset.coco) |
|
aggregated_results[corruption][ |
|
corruption_severity] = eval_results |
|
else: |
|
print('\nNo task was selected for evaluation;' |
|
'\nUse --eval to select a task') |
|
|
|
|
|
mmcv.dump(aggregated_results, eval_results_filename) |
|
|
|
if rank == 0: |
|
|
|
print('\nAggregated results:') |
|
prints = args.final_prints |
|
aggregate = args.final_prints_aggregate |
|
|
|
if cfg.dataset_type == 'VOCDataset': |
|
get_results( |
|
eval_results_filename, |
|
dataset='voc', |
|
prints=prints, |
|
aggregate=aggregate) |
|
else: |
|
get_results( |
|
eval_results_filename, |
|
dataset='coco', |
|
prints=prints, |
|
aggregate=aggregate) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|