|
_base_ = ['./ndl.py'] |
|
|
|
dataset_type = 'CocoDataset' |
|
classes = ('line_main', 'line_none', 'line_inote', 'line_hnote', 'line_caption', |
|
'block_fig', 'block_table', 'block_pillar', 'block_folio', 'block_rubi', |
|
'block_chart', 'block_eqn', 'block_cfm', 'block_eng', |
|
'char', 'void') |
|
|
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
|
|
image_size = 1024 |
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', img_scale=(image_size, image_size), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(image_size, image_size), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
|
|
data = dict( |
|
samples_per_gpu=1, |
|
workers_per_gpu=1, |
|
train=dict( |
|
type=dataset_type, |
|
|
|
classes=classes, |
|
ann_file='/tmp/generated/dataset_kindai_preprocessed_train.json', |
|
img_prefix='/tmp/dataset_kindai_preprocessed_out', |
|
pipeline=train_pipeline), |
|
val=dict( |
|
type=dataset_type, |
|
|
|
classes=classes, |
|
ann_file='/tmp/generated/dataset_kindai_preprocessed_test.json', |
|
img_prefix='/tmp/dataset_kindai_preprocessed_out', |
|
pipeline=test_pipeline), |
|
test=dict( |
|
type=dataset_type, |
|
|
|
classes=classes, |
|
ann_file='/tmp/generated/dataset_kindai_preprocessed_test.json', |
|
img_prefix='/tmp/dataset_kindai_preprocessed_out', |
|
pipeline=test_pipeline)) |
|
|
|
evaluation = dict(interval=10, metric=['bbox'], classwise=True) |
|
|