|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule |
|
from mmcv.runner import auto_fp16 |
|
|
|
from ..builder import NECKS |
|
from .fpn import FPN |
|
|
|
|
|
@NECKS.register_module() |
|
class PAFPN(FPN): |
|
"""Path Aggregation Network for Instance Segmentation. |
|
|
|
This is an implementation of the `PAFPN in Path Aggregation Network |
|
<https://arxiv.org/abs/1803.01534>`_. |
|
|
|
Args: |
|
in_channels (List[int]): Number of input channels per scale. |
|
out_channels (int): Number of output channels (used at each scale) |
|
num_outs (int): Number of output scales. |
|
start_level (int): Index of the start input backbone level used to |
|
build the feature pyramid. Default: 0. |
|
end_level (int): Index of the end input backbone level (exclusive) to |
|
build the feature pyramid. Default: -1, which means the last level. |
|
add_extra_convs (bool): Whether to add conv layers on top of the |
|
original feature maps. Default: False. |
|
extra_convs_on_inputs (bool): Whether to apply extra conv on |
|
the original feature from the backbone. Default: False. |
|
relu_before_extra_convs (bool): Whether to apply relu before the extra |
|
conv. Default: False. |
|
no_norm_on_lateral (bool): Whether to apply norm on lateral. |
|
Default: False. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None. |
|
norm_cfg (dict): Config dict for normalization layer. Default: None. |
|
act_cfg (str): Config dict for activation layer in ConvModule. |
|
Default: None. |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
num_outs, |
|
start_level=0, |
|
end_level=-1, |
|
add_extra_convs=False, |
|
extra_convs_on_inputs=True, |
|
relu_before_extra_convs=False, |
|
no_norm_on_lateral=False, |
|
conv_cfg=None, |
|
norm_cfg=None, |
|
act_cfg=None, |
|
init_cfg=dict( |
|
type='Xavier', layer='Conv2d', distribution='uniform')): |
|
super(PAFPN, self).__init__( |
|
in_channels, |
|
out_channels, |
|
num_outs, |
|
start_level, |
|
end_level, |
|
add_extra_convs, |
|
extra_convs_on_inputs, |
|
relu_before_extra_convs, |
|
no_norm_on_lateral, |
|
conv_cfg, |
|
norm_cfg, |
|
act_cfg, |
|
init_cfg=init_cfg) |
|
|
|
self.downsample_convs = nn.ModuleList() |
|
self.pafpn_convs = nn.ModuleList() |
|
for i in range(self.start_level + 1, self.backbone_end_level): |
|
d_conv = ConvModule( |
|
out_channels, |
|
out_channels, |
|
3, |
|
stride=2, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
inplace=False) |
|
pafpn_conv = ConvModule( |
|
out_channels, |
|
out_channels, |
|
3, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
inplace=False) |
|
self.downsample_convs.append(d_conv) |
|
self.pafpn_convs.append(pafpn_conv) |
|
|
|
@auto_fp16() |
|
def forward(self, inputs): |
|
"""Forward function.""" |
|
assert len(inputs) == len(self.in_channels) |
|
|
|
|
|
laterals = [ |
|
lateral_conv(inputs[i + self.start_level]) |
|
for i, lateral_conv in enumerate(self.lateral_convs) |
|
] |
|
|
|
|
|
used_backbone_levels = len(laterals) |
|
for i in range(used_backbone_levels - 1, 0, -1): |
|
prev_shape = laterals[i - 1].shape[2:] |
|
laterals[i - 1] += F.interpolate( |
|
laterals[i], size=prev_shape, mode='nearest') |
|
|
|
|
|
|
|
inter_outs = [ |
|
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) |
|
] |
|
|
|
|
|
for i in range(0, used_backbone_levels - 1): |
|
inter_outs[i + 1] += self.downsample_convs[i](inter_outs[i]) |
|
|
|
outs = [] |
|
outs.append(inter_outs[0]) |
|
outs.extend([ |
|
self.pafpn_convs[i - 1](inter_outs[i]) |
|
for i in range(1, used_backbone_levels) |
|
]) |
|
|
|
|
|
if self.num_outs > len(outs): |
|
|
|
|
|
if not self.add_extra_convs: |
|
for i in range(self.num_outs - used_backbone_levels): |
|
outs.append(F.max_pool2d(outs[-1], 1, stride=2)) |
|
|
|
else: |
|
if self.add_extra_convs == 'on_input': |
|
orig = inputs[self.backbone_end_level - 1] |
|
outs.append(self.fpn_convs[used_backbone_levels](orig)) |
|
elif self.add_extra_convs == 'on_lateral': |
|
outs.append(self.fpn_convs[used_backbone_levels]( |
|
laterals[-1])) |
|
elif self.add_extra_convs == 'on_output': |
|
outs.append(self.fpn_convs[used_backbone_levels](outs[-1])) |
|
else: |
|
raise NotImplementedError |
|
for i in range(used_backbone_levels + 1, self.num_outs): |
|
if self.relu_before_extra_convs: |
|
outs.append(self.fpn_convs[i](F.relu(outs[-1]))) |
|
else: |
|
outs.append(self.fpn_convs[i](outs[-1])) |
|
return tuple(outs) |
|
|