|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import constant_init, xavier_init |
|
from mmcv.runner import BaseModule, ModuleList |
|
|
|
from ..builder import NECKS, build_backbone |
|
from .fpn import FPN |
|
|
|
|
|
class ASPP(BaseModule): |
|
"""ASPP (Atrous Spatial Pyramid Pooling) |
|
|
|
This is an implementation of the ASPP module used in DetectoRS |
|
(https://arxiv.org/pdf/2006.02334.pdf) |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of channels produced by this module |
|
dilations (tuple[int]): Dilations of the four branches. |
|
Default: (1, 3, 6, 1) |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
dilations=(1, 3, 6, 1), |
|
init_cfg=dict(type='Kaiming', layer='Conv2d')): |
|
super().__init__(init_cfg) |
|
assert dilations[-1] == 1 |
|
self.aspp = nn.ModuleList() |
|
for dilation in dilations: |
|
kernel_size = 3 if dilation > 1 else 1 |
|
padding = dilation if dilation > 1 else 0 |
|
conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
dilation=dilation, |
|
padding=padding, |
|
bias=True) |
|
self.aspp.append(conv) |
|
self.gap = nn.AdaptiveAvgPool2d(1) |
|
|
|
def forward(self, x): |
|
avg_x = self.gap(x) |
|
out = [] |
|
for aspp_idx in range(len(self.aspp)): |
|
inp = avg_x if (aspp_idx == len(self.aspp) - 1) else x |
|
out.append(F.relu_(self.aspp[aspp_idx](inp))) |
|
out[-1] = out[-1].expand_as(out[-2]) |
|
out = torch.cat(out, dim=1) |
|
return out |
|
|
|
|
|
@NECKS.register_module() |
|
class RFP(FPN): |
|
"""RFP (Recursive Feature Pyramid) |
|
|
|
This is an implementation of RFP in `DetectoRS |
|
<https://arxiv.org/pdf/2006.02334.pdf>`_. Different from standard FPN, the |
|
input of RFP should be multi level features along with origin input image |
|
of backbone. |
|
|
|
Args: |
|
rfp_steps (int): Number of unrolled steps of RFP. |
|
rfp_backbone (dict): Configuration of the backbone for RFP. |
|
aspp_out_channels (int): Number of output channels of ASPP module. |
|
aspp_dilations (tuple[int]): Dilation rates of four branches. |
|
Default: (1, 3, 6, 1) |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
Default: None |
|
""" |
|
|
|
def __init__(self, |
|
rfp_steps, |
|
rfp_backbone, |
|
aspp_out_channels, |
|
aspp_dilations=(1, 3, 6, 1), |
|
init_cfg=None, |
|
**kwargs): |
|
assert init_cfg is None, 'To prevent abnormal initialization ' \ |
|
'behavior, init_cfg is not allowed to be set' |
|
super().__init__(init_cfg=init_cfg, **kwargs) |
|
self.rfp_steps = rfp_steps |
|
|
|
|
|
self.rfp_modules = ModuleList() |
|
for rfp_idx in range(1, rfp_steps): |
|
rfp_module = build_backbone(rfp_backbone) |
|
self.rfp_modules.append(rfp_module) |
|
self.rfp_aspp = ASPP(self.out_channels, aspp_out_channels, |
|
aspp_dilations) |
|
self.rfp_weight = nn.Conv2d( |
|
self.out_channels, |
|
1, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True) |
|
|
|
def init_weights(self): |
|
|
|
|
|
|
|
for convs in [self.lateral_convs, self.fpn_convs]: |
|
for m in convs.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
xavier_init(m, distribution='uniform') |
|
for rfp_idx in range(self.rfp_steps - 1): |
|
self.rfp_modules[rfp_idx].init_weights() |
|
constant_init(self.rfp_weight, 0) |
|
|
|
def forward(self, inputs): |
|
inputs = list(inputs) |
|
assert len(inputs) == len(self.in_channels) + 1 |
|
img = inputs.pop(0) |
|
|
|
x = super().forward(tuple(inputs)) |
|
for rfp_idx in range(self.rfp_steps - 1): |
|
rfp_feats = [x[0]] + list( |
|
self.rfp_aspp(x[i]) for i in range(1, len(x))) |
|
x_idx = self.rfp_modules[rfp_idx].rfp_forward(img, rfp_feats) |
|
|
|
x_idx = super().forward(x_idx) |
|
x_new = [] |
|
for ft_idx in range(len(x_idx)): |
|
add_weight = torch.sigmoid(self.rfp_weight(x_idx[ft_idx])) |
|
x_new.append(add_weight * x_idx[ft_idx] + |
|
(1 - add_weight) * x[ft_idx]) |
|
x = x_new |
|
return x |
|
|