3v324v23's picture
Add files
c9019cd
raw
history blame
5 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import constant_init, xavier_init
from mmcv.runner import BaseModule, ModuleList
from ..builder import NECKS, build_backbone
from .fpn import FPN
class ASPP(BaseModule):
"""ASPP (Atrous Spatial Pyramid Pooling)
This is an implementation of the ASPP module used in DetectoRS
(https://arxiv.org/pdf/2006.02334.pdf)
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of channels produced by this module
dilations (tuple[int]): Dilations of the four branches.
Default: (1, 3, 6, 1)
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
in_channels,
out_channels,
dilations=(1, 3, 6, 1),
init_cfg=dict(type='Kaiming', layer='Conv2d')):
super().__init__(init_cfg)
assert dilations[-1] == 1
self.aspp = nn.ModuleList()
for dilation in dilations:
kernel_size = 3 if dilation > 1 else 1
padding = dilation if dilation > 1 else 0
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
padding=padding,
bias=True)
self.aspp.append(conv)
self.gap = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
avg_x = self.gap(x)
out = []
for aspp_idx in range(len(self.aspp)):
inp = avg_x if (aspp_idx == len(self.aspp) - 1) else x
out.append(F.relu_(self.aspp[aspp_idx](inp)))
out[-1] = out[-1].expand_as(out[-2])
out = torch.cat(out, dim=1)
return out
@NECKS.register_module()
class RFP(FPN):
"""RFP (Recursive Feature Pyramid)
This is an implementation of RFP in `DetectoRS
<https://arxiv.org/pdf/2006.02334.pdf>`_. Different from standard FPN, the
input of RFP should be multi level features along with origin input image
of backbone.
Args:
rfp_steps (int): Number of unrolled steps of RFP.
rfp_backbone (dict): Configuration of the backbone for RFP.
aspp_out_channels (int): Number of output channels of ASPP module.
aspp_dilations (tuple[int]): Dilation rates of four branches.
Default: (1, 3, 6, 1)
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
rfp_steps,
rfp_backbone,
aspp_out_channels,
aspp_dilations=(1, 3, 6, 1),
init_cfg=None,
**kwargs):
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super().__init__(init_cfg=init_cfg, **kwargs)
self.rfp_steps = rfp_steps
# Be careful! Pretrained weights cannot be loaded when use
# nn.ModuleList
self.rfp_modules = ModuleList()
for rfp_idx in range(1, rfp_steps):
rfp_module = build_backbone(rfp_backbone)
self.rfp_modules.append(rfp_module)
self.rfp_aspp = ASPP(self.out_channels, aspp_out_channels,
aspp_dilations)
self.rfp_weight = nn.Conv2d(
self.out_channels,
1,
kernel_size=1,
stride=1,
padding=0,
bias=True)
def init_weights(self):
# Avoid using super().init_weights(), which may alter the default
# initialization of the modules in self.rfp_modules that have missing
# keys in the pretrained checkpoint.
for convs in [self.lateral_convs, self.fpn_convs]:
for m in convs.modules():
if isinstance(m, nn.Conv2d):
xavier_init(m, distribution='uniform')
for rfp_idx in range(self.rfp_steps - 1):
self.rfp_modules[rfp_idx].init_weights()
constant_init(self.rfp_weight, 0)
def forward(self, inputs):
inputs = list(inputs)
assert len(inputs) == len(self.in_channels) + 1 # +1 for input image
img = inputs.pop(0)
# FPN forward
x = super().forward(tuple(inputs))
for rfp_idx in range(self.rfp_steps - 1):
rfp_feats = [x[0]] + list(
self.rfp_aspp(x[i]) for i in range(1, len(x)))
x_idx = self.rfp_modules[rfp_idx].rfp_forward(img, rfp_feats)
# FPN forward
x_idx = super().forward(x_idx)
x_new = []
for ft_idx in range(len(x_idx)):
add_weight = torch.sigmoid(self.rfp_weight(x_idx[ft_idx]))
x_new.append(add_weight * x_idx[ft_idx] +
(1 - add_weight) * x[ft_idx])
x = x_new
return x