|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import build_activation_layer, build_norm_layer, xavier_init |
|
from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER, |
|
TRANSFORMER_LAYER_SEQUENCE) |
|
from mmcv.cnn.bricks.transformer import (BaseTransformerLayer, |
|
MultiScaleDeformableAttention, |
|
TransformerLayerSequence, |
|
build_transformer_layer_sequence) |
|
from mmcv.runner.base_module import BaseModule |
|
from torch.nn.init import normal_ |
|
|
|
from mmdet.models.utils.builder import TRANSFORMER |
|
|
|
|
|
def inverse_sigmoid(x, eps=1e-5): |
|
"""Inverse function of sigmoid. |
|
|
|
Args: |
|
x (Tensor): The tensor to do the |
|
inverse. |
|
eps (float): EPS avoid numerical |
|
overflow. Defaults 1e-5. |
|
Returns: |
|
Tensor: The x has passed the inverse |
|
function of sigmoid, has same |
|
shape with input. |
|
""" |
|
x = x.clamp(min=0, max=1) |
|
x1 = x.clamp(min=eps) |
|
x2 = (1 - x).clamp(min=eps) |
|
return torch.log(x1 / x2) |
|
|
|
|
|
@TRANSFORMER_LAYER.register_module() |
|
class DetrTransformerDecoderLayer(BaseTransformerLayer): |
|
"""Implements decoder layer in DETR transformer. |
|
|
|
Args: |
|
attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )): |
|
Configs for self_attention or cross_attention, the order |
|
should be consistent with it in `operation_order`. If it is |
|
a dict, it would be expand to the number of attention in |
|
`operation_order`. |
|
feedforward_channels (int): The hidden dimension for FFNs. |
|
ffn_dropout (float): Probability of an element to be zeroed |
|
in ffn. Default 0.0. |
|
operation_order (tuple[str]): The execution order of operation |
|
in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). |
|
Default:None |
|
act_cfg (dict): The activation config for FFNs. Default: `LN` |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: `LN`. |
|
ffn_num_fcs (int): The number of fully-connected layers in FFNs. |
|
Default:2. |
|
""" |
|
|
|
def __init__(self, |
|
attn_cfgs, |
|
feedforward_channels, |
|
ffn_dropout=0.0, |
|
operation_order=None, |
|
act_cfg=dict(type='ReLU', inplace=True), |
|
norm_cfg=dict(type='LN'), |
|
ffn_num_fcs=2, |
|
**kwargs): |
|
super(DetrTransformerDecoderLayer, self).__init__( |
|
attn_cfgs=attn_cfgs, |
|
feedforward_channels=feedforward_channels, |
|
ffn_dropout=ffn_dropout, |
|
operation_order=operation_order, |
|
act_cfg=act_cfg, |
|
norm_cfg=norm_cfg, |
|
ffn_num_fcs=ffn_num_fcs, |
|
**kwargs) |
|
assert len(operation_order) == 6 |
|
assert set(operation_order) == set( |
|
['self_attn', 'norm', 'cross_attn', 'ffn']) |
|
|
|
|
|
@TRANSFORMER_LAYER_SEQUENCE.register_module() |
|
class DetrTransformerEncoder(TransformerLayerSequence): |
|
"""TransformerEncoder of DETR. |
|
|
|
Args: |
|
post_norm_cfg (dict): Config of last normalization layer. Default: |
|
`LN`. Only used when `self.pre_norm` is `True` |
|
""" |
|
|
|
def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs): |
|
super(DetrTransformerEncoder, self).__init__(*args, **kwargs) |
|
if post_norm_cfg is not None: |
|
self.post_norm = build_norm_layer( |
|
post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None |
|
else: |
|
assert not self.pre_norm, f'Use prenorm in ' \ |
|
f'{self.__class__.__name__},' \ |
|
f'Please specify post_norm_cfg' |
|
self.post_norm = None |
|
|
|
def forward(self, *args, **kwargs): |
|
"""Forward function for `TransformerCoder`. |
|
|
|
Returns: |
|
Tensor: forwarded results with shape [num_query, bs, embed_dims]. |
|
""" |
|
x = super(DetrTransformerEncoder, self).forward(*args, **kwargs) |
|
if self.post_norm is not None: |
|
x = self.post_norm(x) |
|
return x |
|
|
|
|
|
@TRANSFORMER_LAYER_SEQUENCE.register_module() |
|
class DetrTransformerDecoder(TransformerLayerSequence): |
|
"""Implements the decoder in DETR transformer. |
|
|
|
Args: |
|
return_intermediate (bool): Whether to return intermediate outputs. |
|
post_norm_cfg (dict): Config of last normalization layer. Default: |
|
`LN`. |
|
""" |
|
|
|
def __init__(self, |
|
*args, |
|
post_norm_cfg=dict(type='LN'), |
|
return_intermediate=False, |
|
**kwargs): |
|
|
|
super(DetrTransformerDecoder, self).__init__(*args, **kwargs) |
|
self.return_intermediate = return_intermediate |
|
if post_norm_cfg is not None: |
|
self.post_norm = build_norm_layer(post_norm_cfg, |
|
self.embed_dims)[1] |
|
else: |
|
self.post_norm = None |
|
|
|
def forward(self, query, *args, **kwargs): |
|
"""Forward function for `TransformerDecoder`. |
|
|
|
Args: |
|
query (Tensor): Input query with shape |
|
`(num_query, bs, embed_dims)`. |
|
|
|
Returns: |
|
Tensor: Results with shape [1, num_query, bs, embed_dims] when |
|
return_intermediate is `False`, otherwise it has shape |
|
[num_layers, num_query, bs, embed_dims]. |
|
""" |
|
if not self.return_intermediate: |
|
x = super().forward(query, *args, **kwargs) |
|
if self.post_norm: |
|
x = self.post_norm(x)[None] |
|
return x |
|
|
|
intermediate = [] |
|
for layer in self.layers: |
|
query = layer(query, *args, **kwargs) |
|
if self.return_intermediate: |
|
if self.post_norm is not None: |
|
intermediate.append(self.post_norm(query)) |
|
else: |
|
intermediate.append(query) |
|
return torch.stack(intermediate) |
|
|
|
|
|
@TRANSFORMER.register_module() |
|
class Transformer(BaseModule): |
|
"""Implements the DETR transformer. |
|
|
|
Following the official DETR implementation, this module copy-paste |
|
from torch.nn.Transformer with modifications: |
|
|
|
* positional encodings are passed in MultiheadAttention |
|
* extra LN at the end of encoder is removed |
|
* decoder returns a stack of activations from all decoding layers |
|
|
|
See `paper: End-to-End Object Detection with Transformers |
|
<https://arxiv.org/pdf/2005.12872>`_ for details. |
|
|
|
Args: |
|
encoder (`mmcv.ConfigDict` | Dict): Config of |
|
TransformerEncoder. Defaults to None. |
|
decoder ((`mmcv.ConfigDict` | Dict)): Config of |
|
TransformerDecoder. Defaults to None |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, encoder=None, decoder=None, init_cfg=None): |
|
super(Transformer, self).__init__(init_cfg=init_cfg) |
|
self.encoder = build_transformer_layer_sequence(encoder) |
|
self.decoder = build_transformer_layer_sequence(decoder) |
|
self.embed_dims = self.encoder.embed_dims |
|
|
|
def init_weights(self): |
|
|
|
for m in self.modules(): |
|
if hasattr(m, 'weight') and m.weight.dim() > 1: |
|
xavier_init(m, distribution='uniform') |
|
self._is_init = True |
|
|
|
def forward(self, x, mask, query_embed, pos_embed): |
|
"""Forward function for `Transformer`. |
|
|
|
Args: |
|
x (Tensor): Input query with shape [bs, c, h, w] where |
|
c = embed_dims. |
|
mask (Tensor): The key_padding_mask used for encoder and decoder, |
|
with shape [bs, h, w]. |
|
query_embed (Tensor): The query embedding for decoder, with shape |
|
[num_query, c]. |
|
pos_embed (Tensor): The positional encoding for encoder and |
|
decoder, with the same shape as `x`. |
|
|
|
Returns: |
|
tuple[Tensor]: results of decoder containing the following tensor. |
|
|
|
- out_dec: Output from decoder. If return_intermediate_dec \ |
|
is True output has shape [num_dec_layers, bs, |
|
num_query, embed_dims], else has shape [1, bs, \ |
|
num_query, embed_dims]. |
|
- memory: Output results from encoder, with shape \ |
|
[bs, embed_dims, h, w]. |
|
""" |
|
bs, c, h, w = x.shape |
|
x = x.flatten(2).permute(2, 0, 1) |
|
pos_embed = pos_embed.flatten(2).permute(2, 0, 1) |
|
query_embed = query_embed.unsqueeze(1).repeat( |
|
1, bs, 1) |
|
mask = mask.flatten(1) |
|
memory = self.encoder( |
|
query=x, |
|
key=None, |
|
value=None, |
|
query_pos=pos_embed, |
|
query_key_padding_mask=mask) |
|
target = torch.zeros_like(query_embed) |
|
|
|
out_dec = self.decoder( |
|
query=target, |
|
key=memory, |
|
value=memory, |
|
key_pos=pos_embed, |
|
query_pos=query_embed, |
|
key_padding_mask=mask) |
|
out_dec = out_dec.transpose(1, 2) |
|
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) |
|
return out_dec, memory |
|
|
|
|
|
@TRANSFORMER_LAYER_SEQUENCE.register_module() |
|
class DeformableDetrTransformerDecoder(TransformerLayerSequence): |
|
"""Implements the decoder in DETR transformer. |
|
|
|
Args: |
|
return_intermediate (bool): Whether to return intermediate outputs. |
|
coder_norm_cfg (dict): Config of last normalization layer. Default: |
|
`LN`. |
|
""" |
|
|
|
def __init__(self, *args, return_intermediate=False, **kwargs): |
|
|
|
super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs) |
|
self.return_intermediate = return_intermediate |
|
|
|
def forward(self, |
|
query, |
|
*args, |
|
reference_points=None, |
|
valid_ratios=None, |
|
reg_branches=None, |
|
**kwargs): |
|
"""Forward function for `TransformerDecoder`. |
|
|
|
Args: |
|
query (Tensor): Input query with shape |
|
`(num_query, bs, embed_dims)`. |
|
reference_points (Tensor): The reference |
|
points of offset. has shape |
|
(bs, num_query, 4) when as_two_stage, |
|
otherwise has shape ((bs, num_query, 2). |
|
valid_ratios (Tensor): The radios of valid |
|
points on the feature map, has shape |
|
(bs, num_levels, 2) |
|
reg_branch: (obj:`nn.ModuleList`): Used for |
|
refining the regression results. Only would |
|
be passed when with_box_refine is True, |
|
otherwise would be passed a `None`. |
|
|
|
Returns: |
|
Tensor: Results with shape [1, num_query, bs, embed_dims] when |
|
return_intermediate is `False`, otherwise it has shape |
|
[num_layers, num_query, bs, embed_dims]. |
|
""" |
|
output = query |
|
intermediate = [] |
|
intermediate_reference_points = [] |
|
for lid, layer in enumerate(self.layers): |
|
if reference_points.shape[-1] == 4: |
|
reference_points_input = reference_points[:, :, None] * \ |
|
torch.cat([valid_ratios, valid_ratios], -1)[:, None] |
|
else: |
|
assert reference_points.shape[-1] == 2 |
|
reference_points_input = reference_points[:, :, None] * \ |
|
valid_ratios[:, None] |
|
output = layer( |
|
output, |
|
*args, |
|
reference_points=reference_points_input, |
|
**kwargs) |
|
output = output.permute(1, 0, 2) |
|
|
|
if reg_branches is not None: |
|
tmp = reg_branches[lid](output) |
|
if reference_points.shape[-1] == 4: |
|
new_reference_points = tmp + inverse_sigmoid( |
|
reference_points) |
|
new_reference_points = new_reference_points.sigmoid() |
|
else: |
|
assert reference_points.shape[-1] == 2 |
|
new_reference_points = tmp |
|
new_reference_points[..., :2] = tmp[ |
|
..., :2] + inverse_sigmoid(reference_points) |
|
new_reference_points = new_reference_points.sigmoid() |
|
reference_points = new_reference_points.detach() |
|
|
|
output = output.permute(1, 0, 2) |
|
if self.return_intermediate: |
|
intermediate.append(output) |
|
intermediate_reference_points.append(reference_points) |
|
|
|
if self.return_intermediate: |
|
return torch.stack(intermediate), torch.stack( |
|
intermediate_reference_points) |
|
|
|
return output, reference_points |
|
|
|
|
|
@TRANSFORMER.register_module() |
|
class DeformableDetrTransformer(Transformer): |
|
"""Implements the DeformableDETR transformer. |
|
|
|
Args: |
|
as_two_stage (bool): Generate query from encoder features. |
|
Default: False. |
|
num_feature_levels (int): Number of feature maps from FPN: |
|
Default: 4. |
|
two_stage_num_proposals (int): Number of proposals when set |
|
`as_two_stage` as True. Default: 300. |
|
""" |
|
|
|
def __init__(self, |
|
as_two_stage=False, |
|
num_feature_levels=4, |
|
two_stage_num_proposals=300, |
|
**kwargs): |
|
super(DeformableDetrTransformer, self).__init__(**kwargs) |
|
self.as_two_stage = as_two_stage |
|
self.num_feature_levels = num_feature_levels |
|
self.two_stage_num_proposals = two_stage_num_proposals |
|
self.embed_dims = self.encoder.embed_dims |
|
self.init_layers() |
|
|
|
def init_layers(self): |
|
"""Initialize layers of the DeformableDetrTransformer.""" |
|
self.level_embeds = nn.Parameter( |
|
torch.Tensor(self.num_feature_levels, self.embed_dims)) |
|
|
|
if self.as_two_stage: |
|
self.enc_output = nn.Linear(self.embed_dims, self.embed_dims) |
|
self.enc_output_norm = nn.LayerNorm(self.embed_dims) |
|
self.pos_trans = nn.Linear(self.embed_dims * 2, |
|
self.embed_dims * 2) |
|
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) |
|
else: |
|
self.reference_points = nn.Linear(self.embed_dims, 2) |
|
|
|
def init_weights(self): |
|
"""Initialize the transformer weights.""" |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
for m in self.modules(): |
|
if isinstance(m, MultiScaleDeformableAttention): |
|
m.init_weight() |
|
if not self.as_two_stage: |
|
xavier_init(self.reference_points, distribution='uniform', bias=0.) |
|
normal_(self.level_embeds) |
|
|
|
def gen_encoder_output_proposals(self, memory, memory_padding_mask, |
|
spatial_shapes): |
|
"""Generate proposals from encoded memory. |
|
|
|
Args: |
|
memory (Tensor) : The output of encoder, |
|
has shape (bs, num_key, embed_dim). num_key is |
|
equal the number of points on feature map from |
|
all level. |
|
memory_padding_mask (Tensor): Padding mask for memory. |
|
has shape (bs, num_key). |
|
spatial_shapes (Tensor): The shape of all feature maps. |
|
has shape (num_level, 2). |
|
|
|
Returns: |
|
tuple: A tuple of feature map and bbox prediction. |
|
|
|
- output_memory (Tensor): The input of decoder, \ |
|
has shape (bs, num_key, embed_dim). num_key is \ |
|
equal the number of points on feature map from \ |
|
all levels. |
|
- output_proposals (Tensor): The normalized proposal \ |
|
after a inverse sigmoid, has shape \ |
|
(bs, num_keys, 4). |
|
""" |
|
|
|
N, S, C = memory.shape |
|
proposals = [] |
|
_cur = 0 |
|
for lvl, (H, W) in enumerate(spatial_shapes): |
|
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view( |
|
N, H, W, 1) |
|
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) |
|
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) |
|
|
|
grid_y, grid_x = torch.meshgrid( |
|
torch.linspace( |
|
0, H - 1, H, dtype=torch.float32, device=memory.device), |
|
torch.linspace( |
|
0, W - 1, W, dtype=torch.float32, device=memory.device)) |
|
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) |
|
|
|
scale = torch.cat([valid_W.unsqueeze(-1), |
|
valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2) |
|
grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale |
|
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) |
|
proposal = torch.cat((grid, wh), -1).view(N, -1, 4) |
|
proposals.append(proposal) |
|
_cur += (H * W) |
|
output_proposals = torch.cat(proposals, 1) |
|
output_proposals_valid = ((output_proposals > 0.01) & |
|
(output_proposals < 0.99)).all( |
|
-1, keepdim=True) |
|
output_proposals = torch.log(output_proposals / (1 - output_proposals)) |
|
output_proposals = output_proposals.masked_fill( |
|
memory_padding_mask.unsqueeze(-1), float('inf')) |
|
output_proposals = output_proposals.masked_fill( |
|
~output_proposals_valid, float('inf')) |
|
|
|
output_memory = memory |
|
output_memory = output_memory.masked_fill( |
|
memory_padding_mask.unsqueeze(-1), float(0)) |
|
output_memory = output_memory.masked_fill(~output_proposals_valid, |
|
float(0)) |
|
output_memory = self.enc_output_norm(self.enc_output(output_memory)) |
|
return output_memory, output_proposals |
|
|
|
@staticmethod |
|
def get_reference_points(spatial_shapes, valid_ratios, device): |
|
"""Get the reference points used in decoder. |
|
|
|
Args: |
|
spatial_shapes (Tensor): The shape of all |
|
feature maps, has shape (num_level, 2). |
|
valid_ratios (Tensor): The radios of valid |
|
points on the feature map, has shape |
|
(bs, num_levels, 2) |
|
device (obj:`device`): The device where |
|
reference_points should be. |
|
|
|
Returns: |
|
Tensor: reference points used in decoder, has \ |
|
shape (bs, num_keys, num_levels, 2). |
|
""" |
|
reference_points_list = [] |
|
for lvl, (H, W) in enumerate(spatial_shapes): |
|
|
|
ref_y, ref_x = torch.meshgrid( |
|
torch.linspace( |
|
0.5, H - 0.5, H, dtype=torch.float32, device=device), |
|
torch.linspace( |
|
0.5, W - 0.5, W, dtype=torch.float32, device=device)) |
|
ref_y = ref_y.reshape(-1)[None] / ( |
|
valid_ratios[:, None, lvl, 1] * H) |
|
ref_x = ref_x.reshape(-1)[None] / ( |
|
valid_ratios[:, None, lvl, 0] * W) |
|
ref = torch.stack((ref_x, ref_y), -1) |
|
reference_points_list.append(ref) |
|
reference_points = torch.cat(reference_points_list, 1) |
|
reference_points = reference_points[:, :, None] * valid_ratios[:, None] |
|
return reference_points |
|
|
|
def get_valid_ratio(self, mask): |
|
"""Get the valid radios of feature maps of all level.""" |
|
_, H, W = mask.shape |
|
valid_H = torch.sum(~mask[:, :, 0], 1) |
|
valid_W = torch.sum(~mask[:, 0, :], 1) |
|
valid_ratio_h = valid_H.float() / H |
|
valid_ratio_w = valid_W.float() / W |
|
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) |
|
return valid_ratio |
|
|
|
def get_proposal_pos_embed(self, |
|
proposals, |
|
num_pos_feats=128, |
|
temperature=10000): |
|
"""Get the position embedding of proposal.""" |
|
scale = 2 * math.pi |
|
dim_t = torch.arange( |
|
num_pos_feats, dtype=torch.float32, device=proposals.device) |
|
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats) |
|
|
|
proposals = proposals.sigmoid() * scale |
|
|
|
pos = proposals[:, :, :, None] / dim_t |
|
|
|
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), |
|
dim=4).flatten(2) |
|
return pos |
|
|
|
def forward(self, |
|
mlvl_feats, |
|
mlvl_masks, |
|
query_embed, |
|
mlvl_pos_embeds, |
|
reg_branches=None, |
|
cls_branches=None, |
|
**kwargs): |
|
"""Forward function for `Transformer`. |
|
|
|
Args: |
|
mlvl_feats (list(Tensor)): Input queries from |
|
different level. Each element has shape |
|
[bs, embed_dims, h, w]. |
|
mlvl_masks (list(Tensor)): The key_padding_mask from |
|
different level used for encoder and decoder, |
|
each element has shape [bs, h, w]. |
|
query_embed (Tensor): The query embedding for decoder, |
|
with shape [num_query, c]. |
|
mlvl_pos_embeds (list(Tensor)): The positional encoding |
|
of feats from different level, has the shape |
|
[bs, embed_dims, h, w]. |
|
reg_branches (obj:`nn.ModuleList`): Regression heads for |
|
feature maps from each decoder layer. Only would |
|
be passed when |
|
`with_box_refine` is Ture. Default to None. |
|
cls_branches (obj:`nn.ModuleList`): Classification heads |
|
for feature maps from each decoder layer. Only would |
|
be passed when `as_two_stage` |
|
is Ture. Default to None. |
|
|
|
|
|
Returns: |
|
tuple[Tensor]: results of decoder containing the following tensor. |
|
|
|
- inter_states: Outputs from decoder. If |
|
return_intermediate_dec is True output has shape \ |
|
(num_dec_layers, bs, num_query, embed_dims), else has \ |
|
shape (1, bs, num_query, embed_dims). |
|
- init_reference_out: The initial value of reference \ |
|
points, has shape (bs, num_queries, 4). |
|
- inter_references_out: The internal value of reference \ |
|
points in decoder, has shape \ |
|
(num_dec_layers, bs,num_query, embed_dims) |
|
- enc_outputs_class: The classification score of \ |
|
proposals generated from \ |
|
encoder's feature maps, has shape \ |
|
(batch, h*w, num_classes). \ |
|
Only would be returned when `as_two_stage` is True, \ |
|
otherwise None. |
|
- enc_outputs_coord_unact: The regression results \ |
|
generated from encoder's feature maps., has shape \ |
|
(batch, h*w, 4). Only would \ |
|
be returned when `as_two_stage` is True, \ |
|
otherwise None. |
|
""" |
|
assert self.as_two_stage or query_embed is not None |
|
|
|
feat_flatten = [] |
|
mask_flatten = [] |
|
lvl_pos_embed_flatten = [] |
|
spatial_shapes = [] |
|
for lvl, (feat, mask, pos_embed) in enumerate( |
|
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): |
|
bs, c, h, w = feat.shape |
|
spatial_shape = (h, w) |
|
spatial_shapes.append(spatial_shape) |
|
feat = feat.flatten(2).transpose(1, 2) |
|
mask = mask.flatten(1) |
|
pos_embed = pos_embed.flatten(2).transpose(1, 2) |
|
lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) |
|
lvl_pos_embed_flatten.append(lvl_pos_embed) |
|
feat_flatten.append(feat) |
|
mask_flatten.append(mask) |
|
feat_flatten = torch.cat(feat_flatten, 1) |
|
mask_flatten = torch.cat(mask_flatten, 1) |
|
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) |
|
spatial_shapes = torch.as_tensor( |
|
spatial_shapes, dtype=torch.long, device=feat_flatten.device) |
|
level_start_index = torch.cat((spatial_shapes.new_zeros( |
|
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) |
|
valid_ratios = torch.stack( |
|
[self.get_valid_ratio(m) for m in mlvl_masks], 1) |
|
|
|
reference_points = \ |
|
self.get_reference_points(spatial_shapes, |
|
valid_ratios, |
|
device=feat.device) |
|
|
|
feat_flatten = feat_flatten.permute(1, 0, 2) |
|
lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute( |
|
1, 0, 2) |
|
memory = self.encoder( |
|
query=feat_flatten, |
|
key=None, |
|
value=None, |
|
query_pos=lvl_pos_embed_flatten, |
|
query_key_padding_mask=mask_flatten, |
|
spatial_shapes=spatial_shapes, |
|
reference_points=reference_points, |
|
level_start_index=level_start_index, |
|
valid_ratios=valid_ratios, |
|
**kwargs) |
|
|
|
memory = memory.permute(1, 0, 2) |
|
bs, _, c = memory.shape |
|
if self.as_two_stage: |
|
output_memory, output_proposals = \ |
|
self.gen_encoder_output_proposals( |
|
memory, mask_flatten, spatial_shapes) |
|
enc_outputs_class = cls_branches[self.decoder.num_layers]( |
|
output_memory) |
|
enc_outputs_coord_unact = \ |
|
reg_branches[ |
|
self.decoder.num_layers](output_memory) + output_proposals |
|
|
|
topk = self.two_stage_num_proposals |
|
topk_proposals = torch.topk( |
|
enc_outputs_class[..., 0], topk, dim=1)[1] |
|
topk_coords_unact = torch.gather( |
|
enc_outputs_coord_unact, 1, |
|
topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) |
|
topk_coords_unact = topk_coords_unact.detach() |
|
reference_points = topk_coords_unact.sigmoid() |
|
init_reference_out = reference_points |
|
pos_trans_out = self.pos_trans_norm( |
|
self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) |
|
query_pos, query = torch.split(pos_trans_out, c, dim=2) |
|
else: |
|
query_pos, query = torch.split(query_embed, c, dim=1) |
|
query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1) |
|
query = query.unsqueeze(0).expand(bs, -1, -1) |
|
reference_points = self.reference_points(query_pos).sigmoid() |
|
init_reference_out = reference_points |
|
|
|
|
|
query = query.permute(1, 0, 2) |
|
memory = memory.permute(1, 0, 2) |
|
query_pos = query_pos.permute(1, 0, 2) |
|
inter_states, inter_references = self.decoder( |
|
query=query, |
|
key=None, |
|
value=memory, |
|
query_pos=query_pos, |
|
key_padding_mask=mask_flatten, |
|
reference_points=reference_points, |
|
spatial_shapes=spatial_shapes, |
|
level_start_index=level_start_index, |
|
valid_ratios=valid_ratios, |
|
reg_branches=reg_branches, |
|
**kwargs) |
|
|
|
inter_references_out = inter_references |
|
if self.as_two_stage: |
|
return inter_states, init_reference_out,\ |
|
inter_references_out, enc_outputs_class,\ |
|
enc_outputs_coord_unact |
|
return inter_states, init_reference_out, \ |
|
inter_references_out, None, None |
|
|
|
|
|
@TRANSFORMER.register_module() |
|
class DynamicConv(BaseModule): |
|
"""Implements Dynamic Convolution. |
|
|
|
This module generate parameters for each sample and |
|
use bmm to implement 1*1 convolution. Code is modified |
|
from the `official github repo <https://github.com/PeizeSun/ |
|
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ . |
|
|
|
Args: |
|
in_channels (int): The input feature channel. |
|
Defaults to 256. |
|
feat_channels (int): The inner feature channel. |
|
Defaults to 64. |
|
out_channels (int, optional): The output feature channel. |
|
When not specified, it will be set to `in_channels` |
|
by default |
|
input_feat_shape (int): The shape of input feature. |
|
Defaults to 7. |
|
act_cfg (dict): The activation config for DynamicConv. |
|
norm_cfg (dict): Config dict for normalization layer. Default |
|
layer normalization. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=256, |
|
feat_channels=64, |
|
out_channels=None, |
|
input_feat_shape=7, |
|
act_cfg=dict(type='ReLU', inplace=True), |
|
norm_cfg=dict(type='LN'), |
|
init_cfg=None): |
|
super(DynamicConv, self).__init__(init_cfg) |
|
self.in_channels = in_channels |
|
self.feat_channels = feat_channels |
|
self.out_channels_raw = out_channels |
|
self.input_feat_shape = input_feat_shape |
|
self.act_cfg = act_cfg |
|
self.norm_cfg = norm_cfg |
|
self.out_channels = out_channels if out_channels else in_channels |
|
|
|
self.num_params_in = self.in_channels * self.feat_channels |
|
self.num_params_out = self.out_channels * self.feat_channels |
|
self.dynamic_layer = nn.Linear( |
|
self.in_channels, self.num_params_in + self.num_params_out) |
|
|
|
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] |
|
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] |
|
|
|
self.activation = build_activation_layer(act_cfg) |
|
|
|
num_output = self.out_channels * input_feat_shape**2 |
|
self.fc_layer = nn.Linear(num_output, self.out_channels) |
|
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] |
|
|
|
def forward(self, param_feature, input_feature): |
|
"""Forward function for `DynamicConv`. |
|
|
|
Args: |
|
param_feature (Tensor): The feature can be used |
|
to generate the parameter, has shape |
|
(num_all_proposals, in_channels). |
|
input_feature (Tensor): Feature that |
|
interact with parameters, has shape |
|
(num_all_proposals, in_channels, H, W). |
|
|
|
Returns: |
|
Tensor: The output feature has shape |
|
(num_all_proposals, out_channels). |
|
""" |
|
num_proposals = param_feature.size(0) |
|
input_feature = input_feature.view(num_proposals, self.in_channels, |
|
-1).permute(2, 0, 1) |
|
|
|
input_feature = input_feature.permute(1, 0, 2) |
|
parameters = self.dynamic_layer(param_feature) |
|
|
|
param_in = parameters[:, :self.num_params_in].view( |
|
-1, self.in_channels, self.feat_channels) |
|
param_out = parameters[:, -self.num_params_out:].view( |
|
-1, self.feat_channels, self.out_channels) |
|
|
|
|
|
|
|
|
|
features = torch.bmm(input_feature, param_in) |
|
features = self.norm_in(features) |
|
features = self.activation(features) |
|
|
|
|
|
features = torch.bmm(features, param_out) |
|
features = self.norm_out(features) |
|
features = self.activation(features) |
|
|
|
features = features.flatten(1) |
|
features = self.fc_layer(features) |
|
features = self.fc_norm(features) |
|
features = self.activation(features) |
|
|
|
return features |
|
|