NDLOCR / src /text_recognition /text_recognition.py
3v324v23's picture
Add files
c9019cd
raw
history blame
24.1 kB
# Copyright (c) 2022, National Diet Library, Japan
#
# This software is released under the CC BY 4.0.
# https://creativecommons.org/licenses/by/4.0/
import argparse
import functools
import difflib
import collections
import pathlib
from tqdm import tqdm
import xml.etree.ElementTree as ET
from xml.dom import minidom
from PIL import Image, ImageDraw, ImageFont
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.utils.data import ConcatDataset, Subset
from nltk.metrics import edit_distance
from utils import CTCLabelConverter, AttnLabelConverter
from dataset import XMLLmdbDataset, AlignCollate, tensor2im
from model import Model
from xmlparser import XMLRawDataset, SyntheticDataset, XMLRawDatasetWithCli
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def gen_dataset(db_type, db_path, opt, line_index=None, accept_empty=True, keep_remain=False):
if db_type == 'xmllmdb':
ds = ConcatDataset([XMLLmdbDataset(root=p, opt=opt) for p in db_path])
if line_index is not None:
ds = Subset(ds, opt.line_index)
elif db_type == 'xmlraw':
ds = XMLRawDataset.from_list(input_paths=db_path,
image_type=XMLRawDataset.IMAGE_TYPE_GRAY_IMAGE,
accept_empty=accept_empty, keep_remain=keep_remain)
opt.workers = 0
elif db_type == 'synth':
ds = SyntheticDataset(opt.character, db_path)
return ds
def _debug_char_prob(preds_prob, character):
preds_v, preds_i = torch.topk(preds_prob, 3)
for b in zip(preds_v.tolist(), preds_i.tolist()):
for p3, i3 in zip(*b):
if i3[0] == 0:
continue
for p, i in zip(p3, i3):
if p > 0.01:
print(f'{p:.2f}', character[i-1], end=' ')
print()
print('--------')
class Inferencer:
@staticmethod
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--remove_char', default=None, help='remove the specified index class. ex. 〓')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
return parser
def __init__(self, opt):
"""
Args:
opt
上記get_parserによってparseされたargument
"""
# model config
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.remove_char is not None:
opt.remove_char = opt.character.index(opt.remove_char) + 1
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
self.model = model
self.converter = converter
self.aligncollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
self.opt = opt
def gen(self, dataset, keep_remain=False, with_tqdm=False):
"""
Args:
dataset
以下を生成するtorch.utils.data.Dataset
PIL.Image(mode="L"), {'WIDTH': int, 'HEIGHT': int, 'STRING': string}
keep_remain
これが有効のとき、xmlraw dbは偶数週目に
推論しない要素を吐くようになる
with_tqdm
これが有効のとき、進捗表示をする
Yields:
image
groundtruth label
prediction label
confidence score
appendix information
"""
converter = self.converter
demo_loader = torch.utils.data.DataLoader(
dataset, batch_size=self.opt.batch_size,
shuffle=False,
num_workers=int(self.opt.workers),
collate_fn=self.aligncollate, pin_memory=True)
if with_tqdm:
demo_loader = tqdm(demo_loader, ncols=80)
# predict
self.model.eval()
with torch.no_grad():
for image_tensors, labels, data in demo_loader:
batch_size = image_tensors.size(0)
image = image_tensors.to(device)
# For max length prediction
length_for_pred = torch.IntTensor([self.opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, self.opt.batch_max_length + 1).fill_(0).to(device)
if 'CTC' in self.opt.Prediction:
preds = self.model(image, text_for_pred)
if self.opt.remove_char is not None:
preds[:, :, self.opt.remove_char] = -1e5
# Select max probabilty (greedy decoding) then decode index to character
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.max(2)
# preds_index = preds_index.view(-1)
preds_str = converter.decode(preds_index, preds_size)
else:
preds = self.model(image, text_for_pred, is_train=False)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
if 0:
_debug_char_prob(preds_prob, self.opt.character)
for image, gt, pred, pred_max_prob, datum in zip(image, labels, preds_str, preds_max_prob, data):
if 'Attn' in self.opt.Prediction:
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
# calculate confidence score (= multiply of pred_max_prob)
try:
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
except Exception:
confidence_score = 0 # for empty pred case, when prune after "end of sentence" token ([s])
yield image, gt, pred, confidence_score, datum
if keep_remain:
for datum in dataset:
yield None, None, None, None, datum
class TR_WORKER:
CHAR_DIFF_NONE = 0
CHAR_DIFF_WRONG = 1
CHAR_DIFF_ALL = 2
def __init__(self,
accuracy=False,
levenshtein_distance=False,
char_diff=CHAR_DIFF_NONE,
render=False,
xml=None,
outimage_dir=None, font_path=None,
stat=False):
self._task = []
self._accuracy = accuracy
self._char_diff = char_diff
self._levenshtein_distance = levenshtein_distance
self._xml = xml
self._stat = stat
self.nline = 0
if accuracy:
self.accuracy = 0
self.ncorrect = 0
self._task.append(self._facc)
if levenshtein_distance:
self.sum_dist = 0
self.normalized_edit_distance = 0
self._task.append(self._fld)
if char_diff != self.CHAR_DIFF_NONE:
self.counters = {
'misstake': collections.Counter(),
'tp': collections.Counter(),
'fn': collections.Counter(),
'fp': collections.Counter(),
}
self._task.append(self._fchar_diff)
self.outimage_dir = outimage_dir
if outimage_dir is None:
self.outimage_dir = None
else:
assert font_path is not None
self.outimage_dir = pathlib.Path(outimage_dir)
self.outimage_dir.mkdir(exist_ok=True)
dtmp = ImageDraw.Draw(Image.new('L', (400, 200)))
self._font = ImageFont.truetype(font_path, 32)
self._textsize = functools.partial(dtmp.multiline_textsize, font=self._font)
if render:
self._task.append(self._frender)
assert font_path is not None
assert outimage_dir is not None
self.outimage_dir = pathlib.Path(outimage_dir)
self.outimage_dir.mkdir(exist_ok=True)
dtmp = ImageDraw.Draw(Image.new('L', (400, 200)))
self._font = ImageFont.truetype(font_path, 32)
self._textsize = functools.partial(dtmp.multiline_textsize, font=self._font)
if xml:
self.outxml_dir = pathlib.Path(xml)
self.outxml_dir.mkdir(exist_ok=True)
self._xml_data = {}
self._task.append(self._fxml)
def finalize(self):
if self._accuracy:
self.accuracy = self.ncorrect / self.nline
if self._levenshtein_distance:
self.normalized_edit_distance = self.sum_dist / self.nline
if self._xml:
self._fgenerate_xml()
if self._stat:
print('===== f measure =====')
for c in self.counters['tp'].keys() | self.counters['fp'].keys() | self.counters['fn'].keys():
tp = self.counters['tp'][c]
precision = tp / (tp + self.counters['fp'][c] + 1e-9)
recall = tp / (tp + self.counters['fn'][c] + 1e-9)
print(c, f"{2 * precision * recall / (precision + recall + 1e-9):.3f}")
print('===== misstake stat =====')
for p, n in self.counters['misstake'].most_common():
if p[1] == '-':
print(p, n, f"U+{ord(p[0]):X} U+{ord(p[2]):X}")
return self
def _facc(self, correct, *args):
if correct:
self.ncorrect += 1
def _fld(self, correct, image, gt, pred, *args):
d = edit_distance(gt, pred)
if len(gt) == 0 and len(pred) == 0:
self.sum_dist += 0
elif len(gt) > len(pred):
self.sum_dist += 1 - d / len(gt)
else:
self.sum_dist += 1 - d / len(pred)
def _frender(self, correct, image, sa1, sb1, *args):
image_pil = Image.fromarray(tensor2im(image))
w, h = self._textsize(f'{sb1}')
g = Image.new(image_pil.mode, (w, h), (255, 255, 255))
d = ImageDraw.Draw(g)
p = [0, 0]
draw_escape_colored_text(sb1, d, p=p, font=self._font)
if h * image_pil.width > image_pil.height * 2 * w:
w = w * image_pil.height * 2 // h
h = image_pil.height * 2
else:
h = h * image_pil.width // w
w = image_pil.width
g = g.resize((w, h))
canvas = Image.new(image_pil.mode, (image_pil.width, image_pil.height + h), (255, 255, 255))
canvas.paste(image_pil)
canvas.paste(g, (0, image_pil.height))
canvas.save(self.outimage_dir / f'{self.nline:09d}-{sb1.replace("/", "")}.png')
def _fchar_diff(self, correct, image, sa1, sb1, *args):
if correct and self._char_diff != self.CHAR_DIFF_ALL:
if self._char_diff == self.CHAR_DIFF_ALL:
print('------------------')
print(sa1)
return
if sa1 is None:
sa1 = ''
sm = difflib.SequenceMatcher(None, sa1, sb1)
sa2 = str()
sb2 = str()
reason = ''
for tag, ia1, ia2, ib1, ib2 in sm.get_opcodes():
if tag == 'equal':
sa2 += "\033[0m"
sb2 += "\033[0m"
self.counters['tp'].update(list(sa1[ia1:ia2]))
elif tag == 'replace':
sa2 += "\033[31m"
sb2 += "\033[31m"
self.counters['fn'].update(list(sa1[ia1:ia2]))
self.counters['fp'].update(list(sb1[ia1:ib2]))
for ia, ib in zip(range(ia1, ia2), range(ib1, ib2)):
self.counters['misstake'].update([f'{sa1[ia]}-{sb1[ib]}'])
reason += f'{sa1[ia]}-{sb1[ib]},'
elif tag == 'insert':
sb2 += "\033[33m"
self.counters['fp'].update(list(sb1[ia1:ib2]))
for ia in range(ia1, ia2):
self.counters['misstake'].update([f'{sa1[ia]}> '])
reason += f'{sa1[ia]}> ,'
elif tag == 'delete':
sa2 += "\033[33m"
self.counters['fn'].update(list(sa1[ia1:ia2]))
for ib in range(ib1, ib2):
self.counters['misstake'].update([f' <{sb1[ib]}'])
reason += f' <{sb1[ib]},'
sa2 += sa1[ia1:ia2]
sb2 += sb1[ib1:ib2]
sa2 += '\033[0m'
sb2 += '\033[0m'
if self._char_diff != self.CHAR_DIFF_NONE:
print(f'-{self.nline:09d}-----------------')
print(sa2)
print(sb2)
if self.outimage_dir is not None:
image_pil = Image.fromarray(tensor2im(image))
w, h = self._textsize(f'{sa2}\n{sb2}')
g = Image.new(image_pil.mode, (w, h), (255, 255, 255))
d = ImageDraw.Draw(g)
p = [0, 0]
draw_escape_colored_text(sa2, d, p=p, font=self._font)
draw_escape_colored_text(sb2, d, p=p, font=self._font)
if h * image_pil.width > image_pil.height * 4 * w:
w = w * image_pil.height * 4 // h
h = image_pil.height * 4
else:
h = h * image_pil.width // w
w = image_pil.width
g = g.resize((w, h))
canvas = Image.new(image_pil.mode, (image_pil.width, image_pil.height + h), (255, 255, 255))
canvas.paste(image_pil)
canvas.paste(g, (0, image_pil.height))
# canvas.save(self.outimage_dir / f'{self.nline:09d}-{reason}.png')
canvas.save(self.outimage_dir / f'{self.nline:09d}-{sa1.replace("/", "")}.png')
def _fxml(self, _1, _2, _3, pred_str, conf, data):
d = dict()
for attr in ['tag', 'DIRECTION', 'TYPE', 'X', 'Y', 'WIDTH', 'HEIGHT', 'CONF']:
if attr in data:
d[attr] = f"{data[attr]}"
if conf is not None:
d['STR_CONF'] = f"{conf:.3f}"
if pred_str is not None:
d['STRING'] = pred_str
pid = data['path'].parents[1].name
imagename = data['path'].name
if pid not in self._xml_data:
self._xml_data[pid] = {}
if imagename not in self._xml_data[pid]:
self._xml_data[pid][imagename] = []
self._xml_data[pid][imagename].append(d)
def _fgenerate_xml(self):
for pid, pages in self._xml_data.items():
xml_data = ET.Element('OCRDATASET')
ET.register_namespace('', 'NDLOCRDATASET')
for p, lines in pages.items():
page = ET.SubElement(xml_data, 'PAGE', attrib={'IMAGENAME': p})
for line in lines:
line = ET.SubElement(page, line.pop('tag', 'LINE'), attrib=line)
xml_str = minidom.parseString(ET.tostring(xml_data, encoding='utf-8', method='xml')).toprettyxml(indent=' ')
out_xml_path = self.outxml_dir / (pid + '.xml')
with out_xml_path.open(mode='w') as f:
f.write(xml_str)
def __call__(self, generator):
for image, gt, pred, conf, data in generator:
correct = gt == pred
for t in self._task:
t(correct, image, gt, pred, conf, data)
self.nline += 1
return self
def draw_escape_colored_text(t, d, p, font):
get_textsize = functools.partial(d.textsize, font=font)
it = iter(t)
cl = (0, 0, 0)
for c in it:
if c == '\033':
n = next(it)
while n[-1] != 'm':
n += next(it)
if n == '[0m':
cl = (0, 0, 0)
elif n == '[31m':
cl = (255, 0, 0)
elif n == '[33m':
cl = (255, 255, 0)
continue
else:
size = get_textsize(c)
d.text(p, c, font=font, fill=cl)
p[0] += size[0]
p[0], p[1] = 0, get_textsize(t)[1]
class InferencerWithCLI:
def __init__(self, conf_dict, character):
class EmptyOption():
def __init__(self):
return
# create option dictionary from parser
parser = Inferencer.get_argparser()
option_key_dict = {}
for action in parser._actions:
for opt_str in action.option_strings:
key_str = None
if opt_str.startswith('--'):
key_str = opt_str[2:]
option_key_dict[key_str] = parser.get_default(key_str)
# create option instance
opt = EmptyOption()
for k, v in option_key_dict.items():
setattr(opt, k, v)
opt.saved_model = conf_dict['saved_model']
opt.batch_max_length = conf_dict['batch_max_length']
opt.batch_size = conf_dict['batch_size']
opt.character = character
opt.imgW = conf_dict['imgW']
opt.workers = conf_dict['workers']
opt.xml = conf_dict['xml']
opt.FeatureExtraction = conf_dict['FeatureExtraction']
opt.Prediction = conf_dict['Prediction']
opt.PAD = conf_dict['PAD']
opt.SequenceModeling = conf_dict['SequenceModeling']
opt.Transformation = conf_dict['Transformation']
self.opt = opt
self.inf = Inferencer(self.opt)
return
def inference_wich_cli(self, img_data, xml_data, accept_empty=False,
yield_block_pillar=True, yield_block_page_num=True):
cudnn.benchmark = True
cudnn.deterministic = True
num_gpu = torch.cuda.device_count()
dataset = XMLRawDatasetWithCli(img_data, xml_data,
accept_empty=accept_empty,
yield_block_pillar=yield_block_pillar,
yield_block_page_num=yield_block_page_num)
generator = self.inf.gen(dataset, keep_remain=self.opt.xml)
result_list = []
for image, gt, pred, conf, data in generator:
result_list.append(pred)
for xml_line in xml_data.getroot().find('PAGE'):
if len(result_list) == 0:
print('ERROR: mismatch num of predicted result and xml line')
break
if result_list[0] is None:
print('No predicted STRING for this xml_line')
print(xml_line.attrib)
del result_list[0]
continue
xml_line.set('STRING', result_list.pop(0))
return xml_data
if __name__ == '__main__':
parser = Inferencer.get_argparser()
g = parser.add_argument_group('db settings')
g.add_argument('--db_path', required=True, nargs='+', help='データベースへのパス(複数指定可). synthの場合はfont pathを指定する')
g.add_argument('--db_type', choices=['xmlraw', 'xmllmdb', 'synth'], help='データベースの種類', default='xmlraw')
g.add_argument('--line_index', type=int, nargs='+', default=None, help='指定の行のみに対して推論. xmllmdb使用時のみ有効')
action = parser.add_argument_group()
action.add_argument('--diff', nargs='?', default='none', const='wrong', choices=['none', 'wrong', 'all'],
help='差分表示. 画像出力したい場合にはoutimage_dirとfont_pathを指定する')
action.add_argument('--render', action='store_true', help='diffのgtなし番. outimage_dirとfont_pathが必要')
action.add_argument('--leven', action='store_true', help='normalized edit distance')
action.add_argument('--acc', action='store_true', help='accuracy')
action.add_argument('--xml', default=None, help='xml出力を行う先を指定する')
parser.add_argument('--stat', action='store_true', help='diff指定時の出力を詳細にする')
parser.add_argument('--outimage_dir', default=None, help='diff指定時の画像出力先')
parser.add_argument('--font_path', default=None, help='diff指定時画像出力する際に使用するttf font')
parser.add_argument('--skip_empty', dest='accept_empty', action='store_false', help='GTが空行の推論を行わない')
opt = parser.parse_args()
assert opt.diff != 'none' or opt.render or opt.leven or opt.acc or opt.xml
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
dataset = gen_dataset(opt.db_type, opt.db_path, opt, line_index=opt.line_index,
accept_empty=opt.accept_empty, keep_remain=opt.xml)
generator = Inferencer(opt).gen(dataset, keep_remain=opt.xml, with_tqdm=True)
char_diff = {
'none': TR_WORKER.CHAR_DIFF_NONE,
'wrong': TR_WORKER.CHAR_DIFF_WRONG,
'all': TR_WORKER.CHAR_DIFF_ALL,
}[opt.diff]
w = TR_WORKER(char_diff=char_diff, render=opt.render, stat=opt.stat,
accuracy=opt.acc, levenshtein_distance=opt.leven,
xml=opt.xml,
outimage_dir=opt.outimage_dir,
font_path=opt.font_path)(generator).finalize()
if w._accuracy:
print(f'Accuracy: {w.accuracy:.4f}')
if w._levenshtein_distance:
print(f'Normalized Edit Distance: {w.normalized_edit_distance:.4f}')