|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class VGG_FeatureExtractor(nn.Module): |
|
""" FeatureExtractor of CRNN (https://arxiv.org/pdf/1507.05717.pdf) """ |
|
|
|
def __init__(self, input_channel, output_channel=512): |
|
super(VGG_FeatureExtractor, self).__init__() |
|
self.output_channel = [int(output_channel / 8), int(output_channel / 4), |
|
int(output_channel / 2), output_channel] |
|
self.ConvNet = nn.Sequential( |
|
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), |
|
nn.MaxPool2d(2, 2), |
|
nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True), |
|
nn.MaxPool2d(2, 2), |
|
nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True), |
|
nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True), |
|
nn.MaxPool2d((2, 1), (2, 1)), |
|
nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False), |
|
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), |
|
nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False), |
|
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), |
|
nn.MaxPool2d((2, 1), (2, 1)), |
|
nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True)) |
|
|
|
def forward(self, input): |
|
return self.ConvNet(input) |
|
|
|
|
|
class RCNN_FeatureExtractor(nn.Module): |
|
""" FeatureExtractor of GRCNN (https://papers.nips.cc/paper/6637-gated-recurrent-convolution-neural-network-for-ocr.pdf) """ |
|
|
|
def __init__(self, input_channel, output_channel=512): |
|
super(RCNN_FeatureExtractor, self).__init__() |
|
self.output_channel = [int(output_channel / 8), int(output_channel / 4), |
|
int(output_channel / 2), output_channel] |
|
self.ConvNet = nn.Sequential( |
|
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), |
|
nn.MaxPool2d(2, 2), |
|
GRCL(self.output_channel[0], self.output_channel[0], num_iteration=5, kernel_size=3, pad=1), |
|
nn.MaxPool2d(2, 2), |
|
GRCL(self.output_channel[0], self.output_channel[1], num_iteration=5, kernel_size=3, pad=1), |
|
nn.MaxPool2d(2, (2, 1), (0, 1)), |
|
GRCL(self.output_channel[1], self.output_channel[2], num_iteration=5, kernel_size=3, pad=1), |
|
nn.MaxPool2d(2, (2, 1), (0, 1)), |
|
nn.Conv2d(self.output_channel[2], self.output_channel[3], 2, 1, 0, bias=False), |
|
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True)) |
|
|
|
def forward(self, input): |
|
return self.ConvNet(input) |
|
|
|
|
|
class ResNet_FeatureExtractor(nn.Module): |
|
""" FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """ |
|
|
|
def __init__(self, input_channel, output_channel=512): |
|
super(ResNet_FeatureExtractor, self).__init__() |
|
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3]) |
|
|
|
def forward(self, input): |
|
return self.ConvNet(input) |
|
|
|
|
|
|
|
class GRCL(nn.Module): |
|
|
|
def __init__(self, input_channel, output_channel, num_iteration, kernel_size, pad): |
|
super(GRCL, self).__init__() |
|
self.wgf_u = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False) |
|
self.wgr_x = nn.Conv2d(output_channel, output_channel, 1, 1, 0, bias=False) |
|
self.wf_u = nn.Conv2d(input_channel, output_channel, kernel_size, 1, pad, bias=False) |
|
self.wr_x = nn.Conv2d(output_channel, output_channel, kernel_size, 1, pad, bias=False) |
|
|
|
self.BN_x_init = nn.BatchNorm2d(output_channel) |
|
|
|
self.num_iteration = num_iteration |
|
self.GRCL = [GRCL_unit(output_channel) for _ in range(num_iteration)] |
|
self.GRCL = nn.Sequential(*self.GRCL) |
|
|
|
def forward(self, input): |
|
""" The input of GRCL is consistant over time t, which is denoted by u(0) |
|
thus wgf_u / wf_u is also consistant over time t. |
|
""" |
|
wgf_u = self.wgf_u(input) |
|
wf_u = self.wf_u(input) |
|
x = F.relu(self.BN_x_init(wf_u)) |
|
|
|
for i in range(self.num_iteration): |
|
x = self.GRCL[i](wgf_u, self.wgr_x(x), wf_u, self.wr_x(x)) |
|
|
|
return x |
|
|
|
|
|
class GRCL_unit(nn.Module): |
|
|
|
def __init__(self, output_channel): |
|
super(GRCL_unit, self).__init__() |
|
self.BN_gfu = nn.BatchNorm2d(output_channel) |
|
self.BN_grx = nn.BatchNorm2d(output_channel) |
|
self.BN_fu = nn.BatchNorm2d(output_channel) |
|
self.BN_rx = nn.BatchNorm2d(output_channel) |
|
self.BN_Gx = nn.BatchNorm2d(output_channel) |
|
|
|
def forward(self, wgf_u, wgr_x, wf_u, wr_x): |
|
G_first_term = self.BN_gfu(wgf_u) |
|
G_second_term = self.BN_grx(wgr_x) |
|
G = F.sigmoid(G_first_term + G_second_term) |
|
|
|
x_first_term = self.BN_fu(wf_u) |
|
x_second_term = self.BN_Gx(self.BN_rx(wr_x) * G) |
|
x = F.relu(x_first_term + x_second_term) |
|
|
|
return x |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = self._conv3x3(inplanes, planes) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = self._conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def _conv3x3(self, in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, input_channel, output_channel, block, layers): |
|
super(ResNet, self).__init__() |
|
|
|
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel] |
|
|
|
self.inplanes = int(output_channel / 8) |
|
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16), |
|
kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16)) |
|
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes, |
|
kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn0_2 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) |
|
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0]) |
|
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[ |
|
0], kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0]) |
|
|
|
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) |
|
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1) |
|
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[ |
|
1], kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1]) |
|
|
|
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1)) |
|
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1) |
|
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[ |
|
2], kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2]) |
|
|
|
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1) |
|
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ |
|
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False) |
|
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3]) |
|
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ |
|
3], kernel_size=2, stride=1, padding=0, bias=False) |
|
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3]) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv0_1(x) |
|
x = self.bn0_1(x) |
|
x = self.relu(x) |
|
x = self.conv0_2(x) |
|
x = self.bn0_2(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool1(x) |
|
x = self.layer1(x) |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool2(x) |
|
x = self.layer2(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool3(x) |
|
x = self.layer3(x) |
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
x = self.relu(x) |
|
|
|
x = self.layer4(x) |
|
x = self.conv4_1(x) |
|
x = self.bn4_1(x) |
|
x = self.relu(x) |
|
x = self.conv4_2(x) |
|
x = self.bn4_2(x) |
|
x = self.relu(x) |
|
|
|
return x |
|
|