# DeepFashion [MMFashion](https://github.com/open-mmlab/mmfashion) develops "fashion parsing and segmentation" module based on the dataset [DeepFashion-Inshop](https://drive.google.com/drive/folders/0B7EVK8r0v71pVDZFQXRsMDZCX1E?usp=sharing). Its annotation follows COCO style. To use it, you need to first download the data. Note that we only use "img_highres" in this task. The file tree should be like this: ```sh mmdetection ├── mmdet ├── tools ├── configs ├── data │ ├── DeepFashion │ │ ├── In-shop │ │ ├── Anno │ │ │   ├── segmentation │ │ │   | ├── DeepFashion_segmentation_train.json │ │ │   | ├── DeepFashion_segmentation_query.json │ │ │   | ├── DeepFashion_segmentation_gallery.json │ │ │   ├── list_bbox_inshop.txt │ │ │   ├── list_description_inshop.json │ │ │   ├── list_item_inshop.txt │ │ │   └── list_landmarks_inshop.txt │ │ ├── Eval │ │ │ └── list_eval_partition.txt │ │ ├── Img │ │ │ ├── img │ │ │ │ ├──XXX.jpg │ │ │ ├── img_highres │ │ │ └── ├──XXX.jpg ``` After that you can train the Mask RCNN r50 on DeepFashion-In-shop dataset by launching training with the `mask_rcnn_r50_fpn_1x.py` config or creating your own config file. ``` @inproceedings{liuLQWTcvpr16DeepFashion, author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou}, title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations}, booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2016} } ``` ## Model Zoo | Backbone | Model type | Dataset | bbox detection Average Precision | segmentation Average Precision | Config | Download (Google) | | :---------: | :----------: | :-----------------: | :--------------------------------: | :----------------------------: | :---------:| :-------------------------: | | ResNet50 | Mask RCNN | DeepFashion-In-shop | 0.599 | 0.584 |[config](https://github.com/open-mmlab/mmdetection/blob/master/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py)| [model](https://drive.google.com/open?id=1q6zF7J6Gb-FFgM87oIORIt6uBozaXp5r) | [log](https://drive.google.com/file/d/1qTK4Dr4FFLa9fkdI6UVko408gkrfTRLP/view?usp=sharing) |