dataset_type = 'CocoDataset' classes = ('line_main', 'line_none', 'line_inote', 'line_hnote', 'line_caption', 'block_fig', 'block_table', 'block_pillar', 'block_folio', 'block_rubi', 'block_chart', 'block_eqn', 'block_cfm', 'block_eng', 'char', 'void') data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) image_size = 1024 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(image_size, image_size), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(image_size, image_size), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=1, train=dict( type=dataset_type, # explicitly add your class names to the field `classes` classes=classes, ann_file='/tmp/generated/dataset_kindai_preprocessed_train.json', img_prefix='/tmp/dataset_kindai_preprocessed_out', pipeline=train_pipeline), val=dict( type=dataset_type, # explicitly add your class names to the field `classes` classes=classes, ann_file='/tmp/generated/dataset_kindai_preprocessed_test.json', img_prefix='/tmp/dataset_kindai_preprocessed_out', pipeline=test_pipeline), test=dict( type=dataset_type, # explicitly add your class names to the field `classes` classes=classes, ann_file='/tmp/generated/dataset_kindai_preprocessed_test.json', img_prefix='/tmp/dataset_kindai_preprocessed_out', pipeline=test_pipeline)) evaluation = dict(interval=10, metric=['bbox', 'segm'], classwise=True)