import argparse import glob import os.path as osp import cityscapesscripts.helpers.labels as CSLabels import mmcv import numpy as np import pycocotools.mask as maskUtils def collect_files(img_dir, gt_dir): suffix = 'leftImg8bit.png' files = [] for img_file in glob.glob(osp.join(img_dir, '**/*.png')): assert img_file.endswith(suffix), img_file inst_file = gt_dir + img_file[ len(img_dir):-len(suffix)] + 'gtFine_instanceIds.png' # Note that labelIds are not converted to trainId for seg map segm_file = gt_dir + img_file[ len(img_dir):-len(suffix)] + 'gtFine_labelIds.png' files.append((img_file, inst_file, segm_file)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') return files def collect_annotations(files, nproc=1): print('Loading annotation images') if nproc > 1: images = mmcv.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmcv.track_progress(load_img_info, files) return images def load_img_info(files): img_file, inst_file, segm_file = files inst_img = mmcv.imread(inst_file, 'unchanged') # ids < 24 are stuff labels (filtering them first is about 5% faster) unique_inst_ids = np.unique(inst_img[inst_img >= 24]) anno_info = [] for inst_id in unique_inst_ids: # For non-crowd annotations, inst_id // 1000 is the label_id # Crowd annotations have <1000 instance ids label_id = inst_id // 1000 if inst_id >= 1000 else inst_id label = CSLabels.id2label[label_id] if not label.hasInstances or label.ignoreInEval: continue category_id = label.id iscrowd = int(inst_id < 1000) mask = np.asarray(inst_img == inst_id, dtype=np.uint8, order='F') mask_rle = maskUtils.encode(mask[:, :, None])[0] area = maskUtils.area(mask_rle) # convert to COCO style XYWH format bbox = maskUtils.toBbox(mask_rle) # for json encoding mask_rle['counts'] = mask_rle['counts'].decode() anno = dict( iscrowd=iscrowd, category_id=category_id, bbox=bbox.tolist(), area=area.tolist(), segmentation=mask_rle) anno_info.append(anno) video_name = osp.basename(osp.dirname(img_file)) img_info = dict( # remove img_prefix for filename file_name=osp.join(video_name, osp.basename(img_file)), height=inst_img.shape[0], width=inst_img.shape[1], anno_info=anno_info, segm_file=osp.join(video_name, osp.basename(segm_file))) return img_info def cvt_annotations(image_infos, out_json_name): out_json = dict() img_id = 0 ann_id = 0 out_json['images'] = [] out_json['categories'] = [] out_json['annotations'] = [] for image_info in image_infos: image_info['id'] = img_id anno_infos = image_info.pop('anno_info') out_json['images'].append(image_info) for anno_info in anno_infos: anno_info['image_id'] = img_id anno_info['id'] = ann_id out_json['annotations'].append(anno_info) ann_id += 1 img_id += 1 for label in CSLabels.labels: if label.hasInstances and not label.ignoreInEval: cat = dict(id=label.id, name=label.name) out_json['categories'].append(cat) if len(out_json['annotations']) == 0: out_json.pop('annotations') mmcv.dump(out_json, out_json_name) return out_json def parse_args(): parser = argparse.ArgumentParser( description='Convert Cityscapes annotations to COCO format') parser.add_argument('cityscapes_path', help='cityscapes data path') parser.add_argument('--img-dir', default='leftImg8bit', type=str) parser.add_argument('--gt-dir', default='gtFine', type=str) parser.add_argument('-o', '--out-dir', help='output path') parser.add_argument( '--nproc', default=1, type=int, help='number of process') args = parser.parse_args() return args def main(): args = parse_args() cityscapes_path = args.cityscapes_path out_dir = args.out_dir if args.out_dir else cityscapes_path mmcv.mkdir_or_exist(out_dir) img_dir = osp.join(cityscapes_path, args.img_dir) gt_dir = osp.join(cityscapes_path, args.gt_dir) set_name = dict( train='instancesonly_filtered_gtFine_train.json', val='instancesonly_filtered_gtFine_val.json', test='instancesonly_filtered_gtFine_test.json') for split, json_name in set_name.items(): print(f'Converting {split} into {json_name}') with mmcv.Timer( print_tmpl='It took {}s to convert Cityscapes annotation'): files = collect_files( osp.join(img_dir, split), osp.join(gt_dir, split)) image_infos = collect_annotations(files, nproc=args.nproc) cvt_annotations(image_infos, osp.join(out_dir, json_name)) if __name__ == '__main__': main()