# AutoAssign: Differentiable Label Assignment for Dense Object Detection ## Introduction ``` @article{zhu2020autoassign, title={AutoAssign: Differentiable Label Assignment for Dense Object Detection}, author={Zhu, Benjin and Wang, Jianfeng and Jiang, Zhengkai and Zong, Fuhang and Liu, Songtao and Li, Zeming and Sun, Jian}, journal={arXiv preprint arXiv:2007.03496}, year={2020} } ``` ## Results and Models | Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download | |:---------:|:-------:|:-------:|:--------:|:------:|:------:|:--------:| | R-50 | pytorch | 1x | 4.08 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.log.json) | **Note**: 1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.3 mAP. mAP 40.3 ~ 40.6 is acceptable. Such fluctuation can also be found in the original implementation. 2. You can get a more stable results ~ mAP 40.6 with a schedule total 13 epoch, and learning rate is divided by 10 at 10th and 13th epoch.