# Cascade RPN We provide the code for reproducing experiment results of [Cascade RPN](https://arxiv.org/abs/1909.06720). ``` @inproceedings{vu2019cascade, title={Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution}, author={Vu, Thang and Jang, Hyunjun and Pham, Trung X and Yoo, Chang D}, booktitle={Conference on Neural Information Processing Systems (NeurIPS)}, year={2019} } ``` ## Benchmark ### Region proposal performance | Method | Backbone | Style | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR 1000 | Download | |:------:|:--------:|:-----:|:--------:|:-------------------:|:--------------:|:-------:|:--------------------------------------:| | CRPN | R-50-FPN | caffe | - | - | - | 72.0 | [model](https://drive.google.com/file/d/1qxVdOnCgK-ee7_z0x6mvAir_glMu2Ihi/view?usp=sharing) | ### Detection performance | Method | Proposal | Backbone | Style | Schedule | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download | |:-------------:|:-----------:|:--------:|:-------:|:--------:|:--------:|:-------------------:|:--------------:|:------:|:--------------------------------------------:| | Fast R-CNN | Cascade RPN | R-50-FPN | caffe | 1x | - | - | - | 39.9 | [model](https://drive.google.com/file/d/1NmbnuY5VHi8I9FE8xnp5uNvh2i-t-6_L/view?usp=sharing) | | Faster R-CNN | Cascade RPN | R-50-FPN | caffe | 1x | - | - | - | 40.4 | [model](https://drive.google.com/file/d/1dS3Q66qXMJpcuuQgDNkLp669E5w1UMuZ/view?usp=sharing) |