import argparse import os import os.path as osp import matplotlib.patches as mpatches import matplotlib.pyplot as plt import mmcv import numpy as np try: import imageio except ImportError: imageio = None def parse_args(): parser = argparse.ArgumentParser(description='Create GIF for demo') parser.add_argument( 'image_dir', help='directory where result ' 'images save path generated by ‘analyze_results.py’') parser.add_argument( '--out', type=str, default='result.gif', help='gif path where will be saved') args = parser.parse_args() return args def _generate_batch_data(sampler, batch_size): batch = [] for idx in sampler: batch.append(idx) if len(batch) == batch_size: yield batch batch = [] if len(batch) > 0: yield batch def create_gif(frames, gif_name, duration=2): """Create gif through imageio. Args: frames (list[ndarray]): Image frames gif_name (str): Saved gif name duration (int): Display interval (s), Default: 2 """ if imageio is None: raise RuntimeError('imageio is not installed,' 'Please use “pip install imageio” to install') imageio.mimsave(gif_name, frames, 'GIF', duration=duration) def create_frame_by_matplotlib(image_dir, nrows=1, fig_size=(300, 300), font_size=15): """Create gif frame image through matplotlib. Args: image_dir (str): Root directory of result images nrows (int): Number of rows displayed, Default: 1 fig_size (tuple): Figure size of the pyplot figure. Default: (300, 300) font_size (int): Font size of texts. Default: 15 Returns: list[ndarray]: image frames """ result_dir_names = os.listdir(image_dir) assert len(result_dir_names) == 2 # Longer length has higher priority result_dir_names.reverse() images_list = [] for dir_names in result_dir_names: images_list.append(mmcv.scandir(osp.join(image_dir, dir_names))) frames = [] for paths in _generate_batch_data(zip(*images_list), nrows): fig, axes = plt.subplots(nrows=nrows, ncols=2) fig.suptitle('Good/bad case selected according ' 'to the COCO mAP of the single image') det_patch = mpatches.Patch(color='salmon', label='prediction') gt_patch = mpatches.Patch(color='royalblue', label='ground truth') # bbox_to_anchor may need to be finetuned plt.legend( handles=[det_patch, gt_patch], bbox_to_anchor=(1, -0.18), loc='lower right', borderaxespad=0.) if nrows == 1: axes = [axes] dpi = fig.get_dpi() # set fig size and margin fig.set_size_inches( (fig_size[0] * 2 + fig_size[0] // 20) / dpi, (fig_size[1] * nrows + fig_size[1] // 3) / dpi, ) fig.tight_layout() # set subplot margin plt.subplots_adjust( hspace=.05, wspace=0.05, left=0.02, right=0.98, bottom=0.02, top=0.98) for i, (path_tuple, ax_tuple) in enumerate(zip(paths, axes)): image_path_left = osp.join( osp.join(image_dir, result_dir_names[0], path_tuple[0])) image_path_right = osp.join( osp.join(image_dir, result_dir_names[1], path_tuple[1])) image_left = mmcv.imread(image_path_left) image_left = mmcv.rgb2bgr(image_left) image_right = mmcv.imread(image_path_right) image_right = mmcv.rgb2bgr(image_right) if i == 0: ax_tuple[0].set_title( result_dir_names[0], fontdict={'size': font_size}) ax_tuple[1].set_title( result_dir_names[1], fontdict={'size': font_size}) ax_tuple[0].imshow( image_left, extent=(0, *fig_size, 0), interpolation='bilinear') ax_tuple[0].axis('off') ax_tuple[1].imshow( image_right, extent=(0, *fig_size, 0), interpolation='bilinear') ax_tuple[1].axis('off') canvas = fig.canvas s, (width, height) = canvas.print_to_buffer() buffer = np.frombuffer(s, dtype='uint8') img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) img = rgb.astype('uint8') frames.append(img) return frames def main(): args = parse_args() frames = create_frame_by_matplotlib(args.image_dir) create_gif(frames, args.out) if __name__ == '__main__': main()