import pytest import torch from mmdet.models import Accuracy, build_loss def test_ce_loss(): # use_mask and use_sigmoid cannot be true at the same time with pytest.raises(AssertionError): loss_cfg = dict( type='CrossEntropyLoss', use_mask=True, use_sigmoid=True, loss_weight=1.0) build_loss(loss_cfg) # test loss with class weights loss_cls_cfg = dict( type='CrossEntropyLoss', use_sigmoid=False, class_weight=[0.8, 0.2], loss_weight=1.0) loss_cls = build_loss(loss_cls_cfg) fake_pred = torch.Tensor([[100, -100]]) fake_label = torch.Tensor([1]).long() assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(40.)) loss_cls_cfg = dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0) loss_cls = build_loss(loss_cls_cfg) assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(200.)) def test_varifocal_loss(): # only sigmoid version of VarifocalLoss is implemented with pytest.raises(AssertionError): loss_cfg = dict( type='VarifocalLoss', use_sigmoid=False, loss_weight=1.0) build_loss(loss_cfg) # test that alpha should be greater than 0 with pytest.raises(AssertionError): loss_cfg = dict( type='VarifocalLoss', alpha=-0.75, gamma=2.0, use_sigmoid=True, loss_weight=1.0) build_loss(loss_cfg) # test that pred and target should be of the same size loss_cls_cfg = dict( type='VarifocalLoss', use_sigmoid=True, alpha=0.75, gamma=2.0, iou_weighted=True, reduction='mean', loss_weight=1.0) loss_cls = build_loss(loss_cls_cfg) with pytest.raises(AssertionError): fake_pred = torch.Tensor([[100.0, -100.0]]) fake_target = torch.Tensor([[1.0]]) loss_cls(fake_pred, fake_target) # test the calculation loss_cls = build_loss(loss_cls_cfg) fake_pred = torch.Tensor([[100.0, -100.0]]) fake_target = torch.Tensor([[1.0, 0.0]]) assert torch.allclose(loss_cls(fake_pred, fake_target), torch.tensor(0.0)) # test the loss with weights loss_cls = build_loss(loss_cls_cfg) fake_pred = torch.Tensor([[0.0, 100.0]]) fake_target = torch.Tensor([[1.0, 1.0]]) fake_weight = torch.Tensor([0.0, 1.0]) assert torch.allclose( loss_cls(fake_pred, fake_target, fake_weight), torch.tensor(0.0)) def test_kd_loss(): # test that temeprature should be greater than 1 with pytest.raises(AssertionError): loss_cfg = dict( type='KnowledgeDistillationKLDivLoss', loss_weight=1.0, T=0.5) build_loss(loss_cfg) # test that pred and target should be of the same size loss_cls_cfg = dict( type='KnowledgeDistillationKLDivLoss', loss_weight=1.0, T=1) loss_cls = build_loss(loss_cls_cfg) with pytest.raises(AssertionError): fake_pred = torch.Tensor([[100, -100]]) fake_label = torch.Tensor([1]).long() loss_cls(fake_pred, fake_label) # test the calculation loss_cls = build_loss(loss_cls_cfg) fake_pred = torch.Tensor([[100.0, 100.0]]) fake_target = torch.Tensor([[1.0, 1.0]]) assert torch.allclose(loss_cls(fake_pred, fake_target), torch.tensor(0.0)) # test the loss with weights loss_cls = build_loss(loss_cls_cfg) fake_pred = torch.Tensor([[100.0, -100.0], [100.0, 100.0]]) fake_target = torch.Tensor([[1.0, 0.0], [1.0, 1.0]]) fake_weight = torch.Tensor([0.0, 1.0]) assert torch.allclose( loss_cls(fake_pred, fake_target, fake_weight), torch.tensor(0.0)) def test_accuracy(): # test for empty pred pred = torch.empty(0, 4) label = torch.empty(0) accuracy = Accuracy(topk=1) acc = accuracy(pred, label) assert acc.item() == 0 pred = torch.Tensor([[0.2, 0.3, 0.6, 0.5], [0.1, 0.1, 0.2, 0.6], [0.9, 0.0, 0.0, 0.1], [0.4, 0.7, 0.1, 0.1], [0.0, 0.0, 0.99, 0]]) # test for top1 true_label = torch.Tensor([2, 3, 0, 1, 2]).long() accuracy = Accuracy(topk=1) acc = accuracy(pred, true_label) assert acc.item() == 100 # test for top1 with score thresh=0.8 true_label = torch.Tensor([2, 3, 0, 1, 2]).long() accuracy = Accuracy(topk=1, thresh=0.8) acc = accuracy(pred, true_label) assert acc.item() == 40 # test for top2 accuracy = Accuracy(topk=2) label = torch.Tensor([3, 2, 0, 0, 2]).long() acc = accuracy(pred, label) assert acc.item() == 100 # test for both top1 and top2 accuracy = Accuracy(topk=(1, 2)) true_label = torch.Tensor([2, 3, 0, 1, 2]).long() acc = accuracy(pred, true_label) for a in acc: assert a.item() == 100 # topk is larger than pred class number with pytest.raises(AssertionError): accuracy = Accuracy(topk=5) accuracy(pred, true_label) # wrong topk type with pytest.raises(AssertionError): accuracy = Accuracy(topk='wrong type') accuracy(pred, true_label) # label size is larger than required with pytest.raises(AssertionError): label = torch.Tensor([2, 3, 0, 1, 2, 0]).long() # size mismatch accuracy = Accuracy() accuracy(pred, label) # wrong pred dimension with pytest.raises(AssertionError): accuracy = Accuracy() accuracy(pred[:, :, None], true_label)