import argparse import copy import os import os.path as osp import time import warnings from pathlib import Path import mmcv import torch from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcv.utils import get_git_hash from mmdet import __version__ from mmdet.apis import set_random_seed, train_detector from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument('--dataset-path', help='the root path of dataset') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.dataset_path is not None: dataset_path = Path(args.dataset_path).resolve() cfg.data.train.ann_file = str(dataset_path / "train.json") cfg.data.val.ann_file = str(dataset_path / "test.json") cfg.data.test.ann_file = str(dataset_path / "test.json") cfg.data.train.img_prefix = cfg.data.val.img_prefix = cfg.data.test.img_prefix = str(dataset_path) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None dir_name = osp.splitext(osp.basename(args.config))[0] if args.dataset_path is not None: dir_name += "_" + str(Path(args.dataset_path).name) cfg.work_dir = osp.join('./work_dirs', dir_name) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()