import os import sys import re import six import math import lmdb import json import torch from natsort import natsorted from PIL import Image import numpy as np from torch.utils.data import Dataset, ConcatDataset, Subset from torch._utils import _accumulate import torchvision.transforms as transforms import torchvision.transforms.functional as F class Batch_Balanced_Dataset(object): def __init__(self, opt): """ Modulate the data ratio in the batch. For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5", the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST. """ log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a') dashed_line = '-' * 80 print(dashed_line) log.write(dashed_line + '\n') print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}') log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n') assert len(opt.select_data) == len(opt.batch_ratio) _AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, augumentation=True) self.data_loader_list = [] self.dataloader_iter_list = [] batch_size_list = [] Total_batch_size = 0 for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio): _batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1) print(dashed_line) log.write(dashed_line + '\n') _dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d]) total_number_dataset = len(_dataset) log.write(_dataset_log) """ The total number of data can be modified with opt.total_data_usage_ratio. ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage. See 4.2 section in our paper. """ number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio)) dataset_split = [number_dataset, total_number_dataset - number_dataset] indices = range(total_number_dataset) _dataset, _ = [Subset(_dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(dataset_split), dataset_split)] selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n' selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}' print(selected_d_log) log.write(selected_d_log + '\n') batch_size_list.append(str(_batch_size)) Total_batch_size += _batch_size _data_loader = torch.utils.data.DataLoader( _dataset, batch_size=_batch_size, shuffle=True, num_workers=int(opt.workers), collate_fn=_AlignCollate, pin_memory=True) self.data_loader_list.append(_data_loader) self.dataloader_iter_list.append(iter(_data_loader)) Total_batch_size_log = f'{dashed_line}\n' batch_size_sum = '+'.join(batch_size_list) Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n' Total_batch_size_log += f'{dashed_line}' opt.batch_size = Total_batch_size print(Total_batch_size_log) log.write(Total_batch_size_log + '\n') log.close() def get_batch(self): balanced_batch_images = [] balanced_batch_texts = [] for i, data_loader_iter in enumerate(self.dataloader_iter_list): try: datum = data_loader_iter.next() image, text = datum[0], datum[1] balanced_batch_images.append(image) balanced_batch_texts += text except StopIteration: self.dataloader_iter_list[i] = iter(self.data_loader_list[i]) datum = self.dataloader_iter_list[i].next() image, text = datum[0], datum[1] balanced_batch_images.append(image) balanced_batch_texts += text except ValueError as e: print(e) pass except Exception as e: print(e) raise e assert len(balanced_batch_images) > 0 balanced_batch_images = torch.cat(balanced_batch_images, 0) return balanced_batch_images, balanced_batch_texts def hierarchical_dataset(root, opt, select_data='/'): """ select_data='/' contains all sub-directory of root directory """ dataset_list = [] dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}' print(dataset_log) dataset_log += '\n' Dataset = LmdbDataset if opt.db_type == 'xmlmdb': Dataset = XMLLmdbDataset elif opt.db_type == 'raw': Dataset = RawDataset for dirpath, dirnames, filenames in os.walk(root+'/'): if not dirnames: select_flag = False for selected_d in select_data: if selected_d in dirpath: select_flag = True break if select_flag: dataset = Dataset(dirpath, opt) sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}' print(sub_dataset_log) dataset_log += f'{sub_dataset_log}\n' dataset_list.append(dataset) concatenated_dataset = ConcatDataset(dataset_list) return concatenated_dataset, dataset_log class LmdbDataset(Dataset): def __init__(self, root, opt): self.root = root self.opt = opt self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) if not self.env: print('cannot create lmdb from %s' % (root)) sys.exit(0) with self.env.begin(write=False) as txn: nSamples = int(txn.get('num-samples'.encode())) self.nSamples = nSamples if not hasattr(self.opt, 'data_filtering_off') or self.opt.data_filtering_off: # for fast check or benchmark evaluation with no filtering self.filtered_index_list = [index + 1 for index in range(self.nSamples)] else: """ Filtering part If you want to evaluate IC15-2077 & CUTE datasets which have special character labels, use --data_filtering_off and only evaluate on alphabets and digits. see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192 And if you want to evaluate them with the model trained with --sensitive option, use --sensitive and --data_filtering_off, see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144 """ self.filtered_index_list = [] for index in range(self.nSamples): index += 1 # lmdb starts with 1 label_key = 'label-%09d'.encode() % index label = txn.get(label_key) assert label is not None, label_key label = label.decode('utf-8') if len(label) > self.opt.batch_max_length: # print(f'The length of the label is longer than max_length: length # {len(label)}, {label} in dataset {self.root}') continue # By default, images containing characters which are not in opt.character are filtered. # You can add [UNK] token to `opt.character` in utils.py instead of this filtering. out_of_char = f'[^{self.opt.character}]' if re.search(out_of_char, label.lower()): continue self.filtered_index_list.append(index) self.nSamples = len(self.filtered_index_list) def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' index = self.filtered_index_list[index] with self.env.begin(write=False) as txn: label_key = 'label-%09d'.encode() % index label = txn.get(label_key).decode('utf-8') img_key = 'image-%09d'.encode() % index imgbuf = txn.get(img_key) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: if self.opt.rgb: img = Image.open(buf).convert('RGB') # for color image else: img = Image.open(buf).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) label = '[dummy_label]' if hasattr(self.opt, 'sensitive') and not self.opt.sensitive: label = label.lower() # We only train and evaluate on alphanumerics (or pre-defined character set in train.py) out_of_char = f'[^{self.opt.character}]' label = re.sub(out_of_char, '', label) return (img, label) class XMLLmdbDataset(Dataset): def __init__(self, root, opt, remove_nil_char=True): self.root = root self.opt = opt self.remove_nil_char = remove_nil_char self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) if not self.env: print('cannot create lmdb from %s' % (root)) sys.exit(0) with self.env.begin(write=False) as txn: nSamples = int(txn.get('n_line'.encode())) self.nSamples = nSamples if not hasattr(self.opt, 'data_filtering_off') or self.opt.data_filtering_off: # for fast check or benchmark evaluation with no filtering self.filtered_index_list = range(self.nSamples) else: """ Filtering part If you want to evaluate IC15-2077 & CUTE datasets which have special character labels, use --data_filtering_off and only evaluate on alphabets and digits. see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192 And if you want to evaluate them with the model trained with --sensitive option, use --sensitive and --data_filtering_off, see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144 """ self.filtered_index_list = [] for index in range(self.nSamples): label_key = f'{index:09d}-label'.encode() label = txn.get(label_key) assert label is not None, label_key label = label.decode('utf-8') if len(label) > self.opt.batch_max_length: # print(f'The length of the label is longer than max_length: length # {len(label)}, {label} in dataset {self.root}') continue # By default, images containing characters which are not in opt.character are filtered. # You can add [UNK] token to `opt.character` in utils.py instead of this filtering. out_of_char = f'[^{self.opt.character}]' if re.search(out_of_char, label.lower()): continue self.filtered_index_list.append(index) self.nSamples = len(self.filtered_index_list) def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' index = self.filtered_index_list[index] with self.env.begin(write=False) as txn: label = txn.get(f'{index:09d}-label'.encode()).decode('utf-8') imgbuf = txn.get(f'{index:09d}-image'.encode()) direction = txn.get(f'{index:09d}-direction'.encode()).decode('utf-8') cattr = txn.get(f'{index:09d}-cattrs'.encode()) if cattr is not None: cattr = json.loads(cattr) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: if self.opt.rgb: img = Image.open(buf).convert('RGB') # for color image else: img = Image.open(buf).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) label = '[dummy_label]' if hasattr(self.opt, 'sensitive') and not self.opt.sensitive: label = label.lower() # We only train and evaluate on alphanumerics (or pre-defined character set in train.py) if self.remove_nil_char: out_of_char = f'[^{self.opt.character}]' label = re.sub(out_of_char, '〓', label) data = { 'label': label, 'direction': direction, 'cattrs': cattr } return (img, data) class RawDataset(Dataset): def __init__(self, root, opt): self.opt = opt self.image_path_list = [] for dirpath, dirnames, filenames in os.walk(root): for name in filenames: _, ext = os.path.splitext(name) ext = ext.lower() if ext == '.jpg' or ext == '.jpeg' or ext == '.png': self.image_path_list.append(os.path.join(dirpath, name)) self.image_path_list = natsorted(self.image_path_list) self.nSamples = len(self.image_path_list) def __len__(self): return self.nSamples def __getitem__(self, index): try: if self.opt.rgb: img = Image.open(self.image_path_list[index]).convert('RGB') # for color image else: img = Image.open(self.image_path_list[index]).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) return (img, self.image_path_list[index]) class ResizeNormalize(object): def __init__(self, size, interpolation=Image.BICUBIC): self.size = size self.interpolation = interpolation self.toTensor = transforms.ToTensor() def __call__(self, img): img = img.resize(self.size, self.interpolation) img = self.toTensor(img) img.sub_(0.5).div_(0.5) return img class NormalizePAD(object): def __init__(self, max_size, PAD_type='right'): self.toTensor = transforms.ToTensor() self.max_size = max_size self.max_width_half = math.floor(max_size[2] / 2) self.PAD_type = PAD_type def __call__(self, img): img = self.toTensor(img) img.sub_(0.5).div_(0.5) c, h, w = img.size() Pad_img = torch.FloatTensor(*self.max_size).fill_(0) Pad_img[:, :, :w] = img # right pad # if self.max_size[2] != w: # add border Pad # Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w) return Pad_img class RandomAspect(torch.nn.Module): def __init__(self, max_variation: int): super().__init__() self.max_variation = max_variation @staticmethod def get_params(img: torch.Tensor, max_variation: int): w, h = F._get_image_size(img) w = torch.randint(max(w - max_variation, w // 2), w + max_variation, size=(1,)).item() h = torch.randint(max(h - max_variation, h // 2), h + max_variation, size=(1,)).item() return w, h def forward(self, img): w, h = self.get_params(img, self.max_variation) return F.resize(img, (h, w)) class RandomPad(torch.nn.Module): def __init__(self, max_padding: int, fill=0, padding_mode="constant"): super().__init__() self.max_padding = max_padding self.fill = fill self.padding_mode = padding_mode @staticmethod def get_params(img: torch.Tensor, max_padding: int): return torch.randint(0, max_padding, size=(4,)).tolist() def forward(self, img): pad = self.get_params(img, self.max_padding) return F.pad(img, pad, fill=self.fill, padding_mode=self.padding_mode) class ConstantPad(torch.nn.Module): def __init__(self, padding: list, fill=0, padding_mode="constant"): super().__init__() self.padding = padding self.fill = fill self.padding_mode = padding_mode def forward(self, img): return F.pad(img, self.padding, fill=self.fill, padding_mode=self.padding_mode) class Partially(torch.nn.Module): def __init__(self, target_aspect): super().__init__() self.target_aspect = target_aspect @staticmethod def get_params(length: int): return torch.randint(0, length, (1,)).item(), torch.randint(0, 2, (1,)).item() def forward(self, img, label, cattrs): w, h = img.size ll = len(cattrs) if ll == 0 or ll != len(label): pass # img.save(f"image_test/no_length:{label}.png") # print('label::::::::', label, cattrs, label) return img, label idx, way = self.get_params(ll) if way and 0: i = idx = min(idx, max(ll - 3, 0)) _x1 = cattrs[idx]['X'] _x2 = cattrs[idx]['X'] + cattrs[idx]['WIDTH'] for i in reversed(range(idx, ll)): attr = cattrs[i] print(i) _x2 = attr['X'] + attr['WIDTH'] asp = (_x2 - _x1) / h if asp <= self.target_aspect: break print(label, label[idx:i+1], idx, i+1) label = label[idx:i+1] else: i = idx = max(idx, min(3, ll - 1)) _x1 = cattrs[idx]['X'] _x2 = cattrs[idx]['X'] + cattrs[idx]['WIDTH'] for i, attr in enumerate(cattrs[:idx+1]): _x1 = attr['X'] asp = (_x2 - _x1) / h if asp <= self.target_aspect: break label = label[i:idx+1] # return img return F.crop(img, 0, _x1, h, _x2 - _x1), label class Sideways(torch.nn.Module): def __init__(self): super().__init__() def forward(self, img, label, vert=None, cattrs=None): if img.width > img.height * 5 and vert == '縦': vert = '横' elif img.height > img.width * 5 and vert == '横': vert = '縦' if vert == '縦' or (label is not None and vert == '横' and len(label) == 1): if cattrs is not None: for attr in cattrs: attr['X'], attr['Y'] = attr['Y'], attr['X'] attr['WIDTH'], attr['HEIGHT'] = attr['HEIGHT'], attr['WIDTH'] return img.transpose(Image.ROTATE_90), label, cattrs elif vert == '横' or (vert == '' and len(label) == 1): return img, label, cattrs elif vert == '右から左': return img, label[::-1], cattrs[::-1] else: # img.save(f'image_test/{vert}-{label}.png') print() raise ValueError(f'{vert} is unknwon, {label}({len(label)})') class AlignCollate(object): def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, augumentation=False): self.imgH = imgH self.imgW = imgW self.keep_ratio_with_pad = keep_ratio_with_pad self.aug = augumentation def __call__(self, batch): preprocess = Sideways() batch = [x for x in batch if x is not None] data = [data for _, data in batch] batch = [preprocess(g, data['label'], data['direction'], data['cattrs']) for g, data in batch] batch = list(zip(*batch)) images, labels, cattrs = batch labels = list(labels) if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper resized_max_w = self.imgW input_channel = 3 if images[0].mode == 'RGB' else 1 transform0 = Partially(self.imgW / self.imgH) transform1 = transforms.Compose([ RandomAspect(10), RandomPad(10, fill=255), transforms.RandomAffine(degrees=2, fill=255), ]) transform2 = transforms.Compose([ NormalizePAD((input_channel, self.imgH, resized_max_w)) ]) transform3 = transforms.Compose([ transforms.GaussianBlur(3, sigma=(1e-5, 0.3)), # transforms.Lambda(lambda g: transforms.functional.adjust_gamma(g, 0.4 + torch.rand(1) * 0.6)), ]) resized_images = [] result_labels = [] for i, (image, cattr) in enumerate(zip(images, cattrs)): label = labels[i] plabel = label pimage = image if self.aug and cattr is not None: image, label = transform0(image, label, cattr) # image.save(f'./image_test/{part_label}.jpg') labels[i] = label w, h = image.size ratio = w / float(h) resized_w0 = math.ceil(self.imgH * ratio) if math.ceil(self.imgH * ratio) > self.imgW: resized_w = self.imgW else: resized_w = math.ceil(self.imgH * ratio) if self.aug: try: resized_image = image.resize((resized_w0, self.imgH), Image.BICUBIC) resized_image = transform1(resized_image) except ValueError as e: label = plabel image = pimage # image.save(f"./image_test/({w},{h})({resized_w0, self.imgH}){label}.png") # image.save(f"./image_test/{label}.png") continue raise e else: resized_image = image resized_image = ConstantPad((10, 0), 255)(resized_image) try: resized_image = resized_image.resize((resized_w, self.imgH), Image.BICUBIC) except ValueError as e: with open('image_test/failed.txt', 'a') as f: f.write(f"{label}\n") # image.save(f"./image_test/{label}.png") continue raise e normalized_tensor = transform2(resized_image) if self.aug: normalized_tensor = transform3(normalized_tensor) resized_images.append(normalized_tensor) # resized_image.save(f'./image_test/{self.aug}-{w:05d}-{label}.jpg') # save_image(tensor2im(normalized_tensor), f'./image_test/{self.aug}-{w:05d}-{label}.jpg') result_labels.append(label) image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0) labels = result_labels else: transform = ResizeNormalize((self.imgW, self.imgH)) image_tensors = [transform(image) for image in images] image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0) return image_tensors, labels, data def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor.cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path)