Spaces:
Running
Running
File size: 15,330 Bytes
29f689c 4842f28 29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
from pathlib import Path
import sys
import time
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
import numpy as np
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
from tools.engine import Config
from tools.utility import ArgsParser
from tools.utils.ckpt import load_ckpt
from tools.utils.logging import get_logger
from tools.utils.utility import get_image_file_list
from tools.infer_det import replace_batchnorm
logger = get_logger()
root_dir = Path(__file__).resolve().parent
DEFAULT_CFG_PATH_REC_SERVER = str(root_dir /
'../configs/rec/svtrv2/svtrv2_ch.yml')
DEFAULT_CFG_PATH_REC = str(root_dir / '../configs/rec/svtrv2/repsvtr_ch.yml')
DEFAULT_DICT_PATH_REC = str(root_dir / './utils/ppocr_keys_v1.txt')
MODEL_NAME_REC = './openocr_repsvtr_ch.pth' # 模型文件名称
DOWNLOAD_URL_REC = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth' # 模型文件 URL
MODEL_NAME_REC_SERVER = './openocr_svtrv2_ch.pth' # 模型文件名称
DOWNLOAD_URL_REC_SERVER = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth' # 模型文件 URL
def check_and_download_model(model_name: str, url: str):
"""
检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。
Args:
model_name (str): 模型文件的名称,例如 "model.pt"
url (str): 模型文件的下载地址
Returns:
str: 模型文件的完整路径
"""
if os.path.exists(model_name):
return model_name
# 固定缓存路径为用户主目录下的 ".cache/openocr"
cache_dir = Path.home() / '.cache' / 'openocr'
model_path = cache_dir / model_name
# 如果模型文件已存在,直接返回路径
if model_path.exists():
logger.info(f'Model already exists at: {model_path}')
return str(model_path)
# 如果文件不存在,下载模型
logger.info(f'Model not found. Downloading from {url}...')
# 创建缓存目录(如果不存在)
cache_dir.mkdir(parents=True, exist_ok=True)
try:
# 下载文件
import urllib.request
with urllib.request.urlopen(url) as response, open(model_path,
'wb') as out_file:
out_file.write(response.read())
logger.info(f'Model downloaded and saved at: {model_path}')
return str(model_path)
except Exception as e:
logger.error(f'Error downloading the model: {e}')
# 提示用户手动下载
logger.error(
f'Unable to download the model automatically. '
f'Please download the model manually from the following URL:\n{url}\n'
f'and save it to: {model_name} or {model_path}')
raise RuntimeError(
f'Failed to download the model. Please download it manually from {url} '
f'and save it to {model_path}') from e
class RatioRecTVReisze(object):
def __init__(self, cfg):
self.max_ratio = cfg['Eval']['loader'].get('max_ratio', 12)
self.base_shape = cfg['Eval']['dataset'].get(
'base_shape', [[64, 64], [96, 48], [112, 40], [128, 32]])
self.base_h = cfg['Eval']['dataset'].get('base_h', 32)
self.interpolation = T.InterpolationMode.BICUBIC
transforms = []
transforms.extend([
T.ToTensor(),
T.Normalize(0.5, 0.5),
])
self.transforms = T.Compose(transforms)
self.ceil = cfg['Eval']['dataset'].get('ceil', False),
def __call__(self, data):
img = data['image']
imgH = self.base_h
w, h = img.size
if self.ceil:
gen_ratio = int(float(w) / float(h)) + 1
else:
gen_ratio = max(1, round(float(w) / float(h)))
ratio_resize = min(gen_ratio, self.max_ratio)
imgW, imgH = self.base_shape[ratio_resize -
1] if ratio_resize <= 4 else [
self.base_h *
ratio_resize, self.base_h
]
resized_w = imgW
resized_image = F.resize(img, (imgH, resized_w),
interpolation=self.interpolation)
img = self.transforms(resized_image)
data['image'] = img
return data
def build_rec_process(cfg):
transforms = []
ratio_resize_flag = True
for op in cfg['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Resize' in op_name:
ratio_resize_flag = False
if 'Label' in op_name:
continue
elif op_name in ['RecResizeImg']:
op[op_name]['infer_mode'] = True
elif op_name == 'KeepKeys':
if cfg['Architecture']['algorithm'] in ['SAR', 'RobustScanner']:
if 'valid_ratio' in op[op_name]['keep_keys']:
op[op_name]['keep_keys'] = ['image', 'valid_ratio']
else:
op[op_name]['keep_keys'] = ['image']
else:
op[op_name]['keep_keys'] = ['image']
transforms.append(op)
return transforms, ratio_resize_flag
def set_device(device, numId=0):
if device == 'gpu' and torch.cuda.is_available():
device = torch.device(f'cuda:{numId}')
else:
logger.info('GPU is not available, using CPU.')
device = torch.device('cpu')
return device
class OpenRecognizer(object):
def __init__(self, config=None, mode='mobile', numId=0):
"""
初始化方法。
Args:
config (dict, optional): 配置信息。默认为None。
mode (str, optional): 模式,'server' 或 'mobile'。默认为'mobile'。
numId (int, optional): 设备编号。默认为0。
Returns:
None
Raises:
无
"""
if config is None:
if mode == 'server':
config = Config(
DEFAULT_CFG_PATH_REC_SERVER).cfg # server model
if not os.path.exists(config['Global']['pretrained_model']):
model_dir = check_and_download_model(
MODEL_NAME_REC_SERVER, DOWNLOAD_URL_REC_SERVER)
else:
config = Config(DEFAULT_CFG_PATH_REC).cfg # mobile model
if not os.path.exists(config['Global']['pretrained_model']):
model_dir = check_and_download_model(
MODEL_NAME_REC, DOWNLOAD_URL_REC)
config['Global']['pretrained_model'] = model_dir
config['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC
else:
if config['Architecture']['algorithm'] == 'SVTRv2_mobile':
if not os.path.exists(config['Global']['pretrained_model']):
config['Global'][
'pretrained_model'] = check_and_download_model(
MODEL_NAME_REC, DOWNLOAD_URL_REC)
config['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC
elif config['Architecture']['algorithm'] == 'SVTRv2_server':
if not os.path.exists(config['Global']['pretrained_model']):
config['Global'][
'pretrained_model'] = check_and_download_model(
MODEL_NAME_REC_SERVER, DOWNLOAD_URL_REC_SERVER)
config['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC
global_config = config['Global']
self.cfg = config
if global_config['pretrained_model'] is None:
global_config[
'pretrained_model'] = global_config['output_dir'] + '/best.pth'
# build post process
from openrec.modeling import build_model as build_rec_model
from openrec.postprocess import build_post_process
from openrec.preprocess import create_operators, transform
self.transform = transform
self.post_process_class = build_post_process(config['PostProcess'],
global_config)
char_num = self.post_process_class.get_character_num()
config['Architecture']['Decoder']['out_channels'] = char_num
# print(char_num)
self.model = build_rec_model(config['Architecture'])
load_ckpt(self.model, config)
# exit(0)
self.device = set_device(global_config['device'], numId=numId)
self.model.eval()
replace_batchnorm(self.model.encoder)
self.model.to(device=self.device)
transforms, ratio_resize_flag = build_rec_process(self.cfg)
global_config['infer_mode'] = True
self.ops = create_operators(transforms, global_config)
if ratio_resize_flag:
ratio_resize = RatioRecTVReisze(cfg=self.cfg)
self.ops.insert(-1, ratio_resize)
def __call__(self,
img_path=None,
img_numpy_list=None,
img_numpy=None,
batch_num=1):
"""
调用函数,处理输入图像,并返回识别结果。
Args:
img_path (str, optional): 图像文件的路径。默认为 None。
img_numpy_list (list, optional): 包含多个图像 numpy 数组的列表。默认为 None。
img_numpy (numpy.ndarray, optional): 单个图像的 numpy 数组。默认为 None。
batch_num (int, optional): 每次处理的图像数量。默认为 1。
Returns:
list: 包含识别结果的列表,每个元素为一个字典,包含文件路径(如果有的话)、文本、分数和延迟时间。
Raises:
Exception: 如果没有提供图像路径或 numpy 数组,则引发异常。
"""
if img_numpy is not None:
img_numpy_list = [img_numpy]
num_img = 1
elif img_path is not None:
img_path = get_image_file_list(img_path)
num_img = len(img_path)
elif img_numpy_list is not None:
num_img = len(img_numpy_list)
else:
raise Exception('No input image path or numpy array.')
results = []
for start_idx in range(0, num_img, batch_num):
batch_data = []
batch_others = []
batch_file_names = []
max_width, max_height = 0, 0
# Prepare batch data
for img_idx in range(start_idx, min(start_idx + batch_num,
num_img)):
if img_numpy_list is not None:
img = img_numpy_list[img_idx]
data = {'image': img}
elif img_path is not None:
file_name = img_path[img_idx]
with open(file_name, 'rb') as f:
img = f.read()
data = {'image': img}
data = self.transform(data, self.ops[:1])
batch_file_names.append(file_name)
batch = self.transform(data, self.ops[1:])
others = None
if self.cfg['Architecture']['algorithm'] in [
'SAR', 'RobustScanner'
]:
valid_ratio = np.expand_dims(batch[-1], axis=0)
batch_others.append(valid_ratio)
# others = [torch.from_numpy(valid_ratio).to(device=self.device)]
resized_image = batch[0]
h, w = resized_image.shape[-2:]
max_width = max(max_width, w)
max_height = max(max_height, h)
batch_data.append(batch[0])
padded_batch_data = []
for resized_image in batch_data:
padded_image = np.zeros([1, 3, max_height, max_width],
dtype=np.float32)
h, w = resized_image.shape[-2:]
# Apply padding (bottom-right padding)
padded_image[:, :, :h, :
w] = resized_image # 0 is typically used for padding
padded_batch_data.append(padded_image)
if batch_others:
others = np.concatenate(batch_others, axis=0)
else:
others = None
images = np.concatenate(padded_batch_data, axis=0)
images = torch.from_numpy(images).to(device=self.device)
with torch.no_grad():
t_start = time.time()
preds = self.model(images, others)
t_cost = time.time() - t_start
post_results = self.post_process_class(preds)
for i, post_result in enumerate(post_results):
if img_path is not None:
info = {
'file': batch_file_names[i],
'text': post_result[0],
'score': post_result[1],
'elapse': t_cost
}
else:
info = {
'text': post_result[0],
'score': post_result[1],
'elapse': t_cost
}
results.append(info)
return results
def main(cfg):
model = OpenRecognizer(cfg)
save_res_path = cfg['Global']['output_dir']
if not os.path.exists(save_res_path):
os.makedirs(save_res_path)
t_sum = 0
sample_num = 0
max_len = cfg['Global']['max_text_length']
text_len_time = [0 for _ in range(max_len)]
text_len_num = [0 for _ in range(max_len)]
sample_num = 0
with open(save_res_path + '/rec_results.txt', 'wb') as fout:
for file in get_image_file_list(cfg['Global']['infer_img']):
preds_result = model(img_path=file, batch_num=1)[0]
rec_text = preds_result['text']
score = preds_result['score']
t_cost = preds_result['elapse']
info = rec_text + '\t' + str(score)
text_len_num[min(max_len - 1, len(rec_text))] += 1
text_len_time[min(max_len - 1, len(rec_text))] += t_cost
logger.info(
f'{sample_num} {file}\t result: {info}, time cost: {t_cost}')
otstr = file + '\t' + info + '\n'
t_sum += t_cost
fout.write(otstr.encode())
sample_num += 1
print(text_len_num)
w_avg_t_cost = []
for l_t_cost, l_num in zip(text_len_time, text_len_num):
if l_num != 0:
w_avg_t_cost.append(l_t_cost / l_num)
print(w_avg_t_cost)
w_avg_t_cost = sum(w_avg_t_cost) / len(w_avg_t_cost)
logger.info(
f'Sample num: {sample_num}, Weighted Avg time cost: {t_sum/sample_num}, Avg time cost: {w_avg_t_cost}'
)
logger.info('success!')
if __name__ == '__main__':
FLAGS = ArgsParser().parse_args()
cfg = Config(FLAGS.config)
FLAGS = vars(FLAGS)
opt = FLAGS.pop('opt')
cfg.merge_dict(FLAGS)
cfg.merge_dict(opt)
main(cfg.cfg)
|