Spaces:
Running
Running
import numbers | |
from collections import defaultdict | |
import numpy as np | |
import torch | |
class DictCollator(object): | |
"""data batch.""" | |
def __call__(self, batch): | |
data_dict = defaultdict(list) | |
to_tensor_keys = [] | |
for sample in batch: | |
for k, v in sample.items(): | |
if isinstance(v, (np.ndarray, torch.Tensor, numbers.Number)): | |
if k not in to_tensor_keys: | |
to_tensor_keys.append(k) | |
data_dict[k].append(v) | |
for k in to_tensor_keys: | |
data_dict[k] = torch.from_numpy(data_dict[k]) | |
return data_dict | |
class ListCollator(object): | |
"""data batch.""" | |
def __call__(self, batch): | |
data_dict = defaultdict(list) | |
to_tensor_idxs = [] | |
for sample in batch: | |
for idx, v in enumerate(sample): | |
if isinstance(v, (np.ndarray, torch.Tensor, numbers.Number)): | |
if idx not in to_tensor_idxs: | |
to_tensor_idxs.append(idx) | |
data_dict[idx].append(v) | |
for idx in to_tensor_idxs: | |
data_dict[idx] = torch.from_numpy(data_dict[idx]) | |
return list(data_dict.values()) | |
class SSLRotateCollate(object): | |
""" | |
bach: [ | |
[(4*3xH*W), (4,)] | |
[(4*3xH*W), (4,)] | |
... | |
] | |
""" | |
def __call__(self, batch): | |
output = [np.concatenate(d, axis=0) for d in zip(*batch)] | |
return output | |
class DyMaskCollator(object): | |
""" | |
batch: [ | |
image [batch_size, channel, maxHinbatch, maxWinbatch] | |
image_mask [batch_size, channel, maxHinbatch, maxWinbatch] | |
label [batch_size, maxLabelLen] | |
label_mask [batch_size, maxLabelLen] | |
... | |
] | |
""" | |
def __call__(self, batch): | |
max_width, max_height, max_length = 0, 0, 0 | |
bs, channel = len(batch), batch[0][0].shape[0] | |
proper_items = [] | |
for item in batch: | |
if item[0].shape[1] * max_width > 1600 * 320 or item[0].shape[ | |
2] * max_height > 1600 * 320: | |
continue | |
max_height = item[0].shape[ | |
1] if item[0].shape[1] > max_height else max_height | |
max_width = item[0].shape[ | |
2] if item[0].shape[2] > max_width else max_width | |
max_length = len( | |
item[1]) if len(item[1]) > max_length else max_length | |
proper_items.append(item) | |
images, image_masks = np.zeros( | |
(len(proper_items), channel, max_height, max_width), | |
dtype='float32'), np.zeros( | |
(len(proper_items), 1, max_height, max_width), dtype='float32') | |
labels, label_masks = np.zeros((len(proper_items), max_length), | |
dtype='int64'), np.zeros( | |
(len(proper_items), max_length), | |
dtype='int64') | |
for i in range(len(proper_items)): | |
_, h, w = proper_items[i][0].shape | |
images[i][:, :h, :w] = proper_items[i][0] | |
image_masks[i][:, :h, :w] = 1 | |
l = len(proper_items[i][1]) | |
labels[i][:l] = proper_items[i][1] | |
label_masks[i][:l] = 1 | |
return images, image_masks, labels, label_masks | |