OpenOCR-Demo / tools /data /ratio_sampler.py
topdu's picture
openocr demo
29f689c
import math
import os
import random
import numpy as np
import torch
from torch.utils.data import Sampler
class RatioSampler(Sampler):
def __init__(self,
data_source,
scales,
first_bs=512,
fix_bs=True,
divided_factor=[8, 16],
is_training=True,
max_ratio=10,
max_bs=1024,
seed=None):
"""
multi scale samper
Args:
data_source(dataset)
scales(list): several scales for image resolution
first_bs(int): batch size for the first scale in scales
divided_factor(list[w, h]): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
is_training(boolean): mode
"""
# min. and max. spatial dimensions
self.data_source = data_source
# self.data_idx_order_list = np.array(data_source.data_idx_order_list)
self.ds_width = data_source.ds_width
self.seed = data_source.seed
if self.ds_width:
self.wh_ratio = data_source.wh_ratio
self.wh_ratio_sort = data_source.wh_ratio_sort
self.n_data_samples = len(self.data_source)
self.max_ratio = max_ratio
self.max_bs = max_bs
if isinstance(scales[0], list):
width_dims = [i[0] for i in scales]
height_dims = [i[1] for i in scales]
elif isinstance(scales[0], int):
width_dims = scales
height_dims = scales
base_im_w = width_dims[0]
base_im_h = height_dims[0]
base_batch_size = first_bs
base_elements = base_im_w * base_im_h * base_batch_size
self.base_elements = base_elements
self.base_batch_size = base_batch_size
self.base_im_h = base_im_h
self.base_im_w = base_im_w
# Get the GPU and node related information
num_replicas = torch.cuda.device_count()
# rank = dist.get_rank()
rank = (int(os.environ['LOCAL_RANK'])
if 'LOCAL_RANK' in os.environ else 0)
# self.rank = rank
# adjust the total samples to avoid batch dropping
num_samples_per_replica = int(
math.ceil(self.n_data_samples * 1.0 / num_replicas))
img_indices = [idx for idx in range(self.n_data_samples)]
self.shuffle = False
if is_training:
# compute the spatial dimensions and corresponding batch size
# ImageNet models down-sample images by a factor of 32.
# Ensure that width and height dimensions are multiples are multiple of 32.
width_dims = [
int((w // divided_factor[0]) * divided_factor[0])
for w in width_dims
]
height_dims = [
int((h // divided_factor[1]) * divided_factor[1])
for h in height_dims
]
img_batch_pairs = list()
for (h, w) in zip(height_dims, width_dims):
if fix_bs:
batch_size = base_batch_size
else:
batch_size = int(max(1, (base_elements / (h * w))))
img_batch_pairs.append((w, h, batch_size))
self.img_batch_pairs = img_batch_pairs
self.shuffle = True
np.random.seed(seed)
random.seed(seed)
else:
self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]
self.img_indices = img_indices
self.n_samples_per_replica = num_samples_per_replica
self.epoch = 0
self.rank = rank
self.num_replicas = num_replicas
# self.batch_list = []
self.current = 0
self.is_training = is_training
if is_training:
indices_rank_i = self.img_indices[
self.rank:len(self.img_indices):self.num_replicas]
else:
indices_rank_i = self.img_indices
self.indices_rank_i_ori = np.array(self.wh_ratio_sort[indices_rank_i])
self.indices_rank_i_ratio = self.wh_ratio[self.indices_rank_i_ori]
indices_rank_i_ratio_unique = np.unique(self.indices_rank_i_ratio)
self.indices_rank_i_ratio_unique = indices_rank_i_ratio_unique.tolist()
self.batch_list = self.create_batch()
self.length = len(self.batch_list)
self.batchs_in_one_epoch_id = [i for i in range(self.length)]
def create_batch(self):
batch_list = []
for ratio in self.indices_rank_i_ratio_unique:
ratio_ids = np.where(self.indices_rank_i_ratio == ratio)[0]
ratio_ids = self.indices_rank_i_ori[ratio_ids]
if self.shuffle:
random.shuffle(ratio_ids)
num_ratio = ratio_ids.shape[0]
if ratio < 5:
batch_size_ratio = self.base_batch_size
else:
batch_size_ratio = min(
self.max_bs,
int(
max(1, (self.base_elements /
(self.base_im_h * ratio * self.base_im_h)))))
if num_ratio > batch_size_ratio:
batch_num_ratio = num_ratio // batch_size_ratio
print(self.rank, num_ratio, ratio * self.base_im_h,
batch_num_ratio, batch_size_ratio)
ratio_ids_full = ratio_ids[:batch_num_ratio *
batch_size_ratio].reshape(
batch_num_ratio,
batch_size_ratio, 1)
w = np.full_like(ratio_ids_full, ratio * self.base_im_h)
h = np.full_like(ratio_ids_full, self.base_im_h)
ra_wh = np.full_like(ratio_ids_full, ratio)
ratio_ids_full = np.concatenate([w, h, ratio_ids_full, ra_wh],
axis=-1)
batch_ratio = ratio_ids_full.tolist()
if batch_num_ratio * batch_size_ratio < num_ratio:
drop = ratio_ids[batch_num_ratio * batch_size_ratio:]
if self.is_training:
drop_full = ratio_ids[:batch_size_ratio - (
num_ratio - batch_num_ratio * batch_size_ratio)]
drop = np.append(drop_full, drop)
drop = drop.reshape(-1, 1)
w = np.full_like(drop, ratio * self.base_im_h)
h = np.full_like(drop, self.base_im_h)
ra_wh = np.full_like(drop, ratio)
drop = np.concatenate([w, h, drop, ra_wh], axis=-1)
batch_ratio.append(drop.tolist())
batch_list += batch_ratio
else:
print(self.rank, num_ratio, ratio * self.base_im_h,
batch_size_ratio)
ratio_ids = ratio_ids.reshape(-1, 1)
w = np.full_like(ratio_ids, ratio * self.base_im_h)
h = np.full_like(ratio_ids, self.base_im_h)
ra_wh = np.full_like(ratio_ids, ratio)
ratio_ids = np.concatenate([w, h, ratio_ids, ra_wh], axis=-1)
batch_list.append(ratio_ids.tolist())
return batch_list
def __iter__(self):
if self.shuffle or self.is_training:
random.seed(self.epoch)
self.epoch += 1
self.batch_list = self.create_batch()
random.shuffle(self.batchs_in_one_epoch_id)
for batch_tuple_id in self.batchs_in_one_epoch_id:
yield self.batch_list[batch_tuple_id]
def set_epoch(self, epoch: int):
self.epoch = epoch
def __len__(self):
return self.length