# -*- encoding: utf-8 -*- # @Author: OpenOCR # @Contact: 784990967@qq.com import os import gradio as gr # gradio==4.20.0 os.environ['FLAGS_allocator_strategy'] = 'auto_growth' import cv2 import numpy as np import json import time from PIL import Image from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt drop_score = 0.01 text_sys = OpenOCR(drop_score=drop_score) # warm up 5 times if True: img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) for i in range(5): res = text_sys(img_numpy=img) font_path = './simfang.ttf' check_and_download_font(font_path) def main(input_image, rec_drop_score=0.01, mask_thresh=0.3, box_thresh=0.6, unclip_ratio=1.5, det_score_mode='slow'): img = input_image[:, :, ::-1] starttime = time.time() results, time_dict, mask = text_sys(img_numpy=img, return_mask=True, thresh=mask_thresh, box_thresh=box_thresh, unclip_ratio=unclip_ratio, score_mode=det_score_mode) elapse = time.time() - starttime save_pred = json.dumps(results[0], ensure_ascii=False) image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) boxes = [res['points'] for res in results[0]] txts = [res['transcription'] for res in results[0]] scores = [res['score'] for res in results[0]] draw_img = draw_ocr_box_txt( image, boxes, txts, scores, drop_score=rec_drop_score, font_path=font_path, ) mask = mask[0, 0, :, :] > mask_thresh return save_pred, elapse, draw_img, mask.astype('uint8') * 255 def get_all_file_names_including_subdirs(dir_path): all_file_names = [] for root, dirs, files in os.walk(dir_path): for file_name in files: all_file_names.append(os.path.join(root, file_name)) file_names_only = [os.path.basename(file) for file in all_file_names] return file_names_only def list_image_paths(directory): image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff') image_paths = [] for root, dirs, files in os.walk(directory): for file in files: if file.lower().endswith(image_extensions): relative_path = os.path.relpath(os.path.join(root, file), directory) full_path = os.path.join(directory, relative_path) image_paths.append(full_path) image_paths = sorted(image_paths) return image_paths def find_file_in_current_dir_and_subdirs(file_name): for root, dirs, files in os.walk('.'): if file_name in files: relative_path = os.path.join(root, file_name) return relative_path e2e_img_example = list_image_paths('./OCR_e2e_img') if __name__ == '__main__': css = '.image-container img { width: 100%; max-height: 320px;}' with gr.Blocks(css=css) as demo: gr.HTML("""
A general OCR system with accuracy and efficiency (created by OCR Team, FVL Lab)
""") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(label='Input image', elem_classes=['image-container']) examples = gr.Examples(examples=e2e_img_example, inputs=input_image, label='Examples') downstream = gr.Button('Run') with gr.Row(): with gr.Column(): rec_drop_score_slider = gr.Slider( 0.0, 1.0, value=0.01, step=0.01, label="Recognition Drop Score", info="Recognition confidence threshold, default value is 0.01. Recognition results and corresponding text boxes lower than this threshold are discarded.") mask_thresh_slider = gr.Slider( 0.0, 1.0, value=0.3, step=0.01, label="Mask Threshold", info="Mask threshold for binarizing masks, defaults to 0.3, turn it down if there is text truncation.") with gr.Column(): box_thresh_slider = gr.Slider( 0.0, 1.0, value=0.6, step=0.01, label="Box Threshold", info="Text Box Confidence Threshold, default value is 0.6, turn it down if there is text being missed.") unclip_ratio_slider = gr.Slider( 1.5, 2.0, value=1.5, step=0.05, label="Unclip Ratio", info="Expansion factor for parsing text boxes, default value is 1.5. The larger the value, the larger the text box.") det_score_mode_dropdown = gr.Dropdown( ["slow", "fast"], value="slow", label="Det Score Mode", info="The confidence calculation mode of the text box, the default is slow. Slow mode is slower but more accurate. Fast mode is faster but less accurate." ) with gr.Column(scale=1): img_mask = gr.Image(label='mask', interactive=False, elem_classes=['image-container']) img_output = gr.Image(label=' ', interactive=False, elem_classes=['image-container']) output = gr.Textbox(label='Result') confidence = gr.Textbox(label='Latency') downstream.click(fn=main, inputs=[ input_image, rec_drop_score_slider, mask_thresh_slider, box_thresh_slider, unclip_ratio_slider, det_score_mode_dropdown ], outputs=[ output, confidence, img_output, img_mask, ]) demo.launch(share=True)