import numbers from collections import defaultdict import numpy as np import torch class DictCollator(object): """data batch.""" def __call__(self, batch): data_dict = defaultdict(list) to_tensor_keys = [] for sample in batch: for k, v in sample.items(): if isinstance(v, (np.ndarray, torch.Tensor, numbers.Number)): if k not in to_tensor_keys: to_tensor_keys.append(k) data_dict[k].append(v) for k in to_tensor_keys: data_dict[k] = torch.from_numpy(data_dict[k]) return data_dict class ListCollator(object): """data batch.""" def __call__(self, batch): data_dict = defaultdict(list) to_tensor_idxs = [] for sample in batch: for idx, v in enumerate(sample): if isinstance(v, (np.ndarray, torch.Tensor, numbers.Number)): if idx not in to_tensor_idxs: to_tensor_idxs.append(idx) data_dict[idx].append(v) for idx in to_tensor_idxs: data_dict[idx] = torch.from_numpy(data_dict[idx]) return list(data_dict.values()) class SSLRotateCollate(object): """ bach: [ [(4*3xH*W), (4,)] [(4*3xH*W), (4,)] ... ] """ def __call__(self, batch): output = [np.concatenate(d, axis=0) for d in zip(*batch)] return output class DyMaskCollator(object): """ batch: [ image [batch_size, channel, maxHinbatch, maxWinbatch] image_mask [batch_size, channel, maxHinbatch, maxWinbatch] label [batch_size, maxLabelLen] label_mask [batch_size, maxLabelLen] ... ] """ def __call__(self, batch): max_width, max_height, max_length = 0, 0, 0 bs, channel = len(batch), batch[0][0].shape[0] proper_items = [] for item in batch: if item[0].shape[1] * max_width > 1600 * 320 or item[0].shape[ 2] * max_height > 1600 * 320: continue max_height = item[0].shape[ 1] if item[0].shape[1] > max_height else max_height max_width = item[0].shape[ 2] if item[0].shape[2] > max_width else max_width max_length = len( item[1]) if len(item[1]) > max_length else max_length proper_items.append(item) images, image_masks = np.zeros( (len(proper_items), channel, max_height, max_width), dtype='float32'), np.zeros( (len(proper_items), 1, max_height, max_width), dtype='float32') labels, label_masks = np.zeros((len(proper_items), max_length), dtype='int64'), np.zeros( (len(proper_items), max_length), dtype='int64') for i in range(len(proper_items)): _, h, w = proper_items[i][0].shape images[i][:, :h, :w] = proper_items[i][0] image_masks[i][:, :h, :w] = 1 l = len(proper_items[i][1]) labels[i][:l] = proper_items[i][1] label_masks[i][:l] = 1 return images, image_masks, labels, label_masks