import csv import os import sys import numpy as np __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) from tools.data import build_dataloader from tools.engine import Config, Trainer from tools.utility import ArgsParser def parse_args(): parser = ArgsParser() args = parser.parse_args() return args def main(): FLAGS = parse_args() cfg = Config(FLAGS.config) FLAGS = vars(FLAGS) opt = FLAGS.pop('opt') cfg.merge_dict(FLAGS) cfg.merge_dict(opt) msr = False if 'RatioDataSet' in cfg.cfg['Eval']['dataset']['name']: msr = True if cfg.cfg['Global']['output_dir'][-1] == '/': cfg.cfg['Global']['output_dir'] = cfg.cfg['Global']['output_dir'][:-1] if cfg.cfg['Global']['pretrained_model'] is None: cfg.cfg['Global'][ 'pretrained_model'] = cfg.cfg['Global']['output_dir'] + '/best.pth' cfg.cfg['Global']['use_amp'] = False cfg.cfg['PostProcess']['with_ratio'] = True cfg.cfg['Metric']['with_ratio'] = True cfg.cfg['Metric']['max_len'] = 25 cfg.cfg['Metric']['max_ratio'] = 12 cfg.cfg['Eval']['dataset']['transforms'][-1]['KeepKeys'][ 'keep_keys'].append('real_ratio') trainer = Trainer(cfg, mode='eval') best_model_dict = trainer.status.get('metrics', {}) trainer.logger.info('metric in ckpt ***************') for k, v in best_model_dict.items(): trainer.logger.info('{}:{}'.format(k, v)) data_dirs_list = [ [ '../test/IIIT5k/', '../test/SVT/', '../test/IC13_857/', '../test/IC15_1811/', '../test/SVTP/', '../test/CUTE80/' ], [ '../u14m/curve/', '../u14m/multi_oriented/', '../u14m/artistic/', '../u14m/contextless/', '../u14m/salient/', '../u14m/multi_words/', '../u14m/general/' ], ['../OST/weak/', '../OST/heavy/'], ['../wordart_test/', '../test/IC13_1015/', '../test/IC15_2077/'] ] cfg = cfg.cfg file_csv = open( cfg['Global']['output_dir'] + '/' + cfg['Global']['output_dir'].split('/')[-1] + '_eval_all_length_ratio.csv', 'w') csv_w = csv.writer(file_csv) cfg['Eval']['dataset']['name'] = cfg['Eval']['dataset']['name'] + 'Test' for data_dirs in data_dirs_list: acc_each = [] acc_each_real = [] acc_each_lower = [] acc_each_ingore_space = [] acc_each_ingore_space_lower = [] acc_each_ignore_space_symbol = [] acc_each_lower_ignore_space_symbol = [] acc_each_num = [] acc_each_dis = [] each_len = {} each_ratio = {} for datadir in data_dirs: config_each = cfg.copy() if msr: config_each['Eval']['dataset']['data_dir_list'] = [datadir] else: config_each['Eval']['dataset']['data_dir'] = datadir valid_dataloader = build_dataloader(config_each, 'Eval', trainer.logger) trainer.logger.info( f'{datadir} valid dataloader has {len(valid_dataloader)} iters' ) trainer.valid_dataloader = valid_dataloader metric = trainer.eval() acc_each.append(metric['acc'] * 100) acc_each_real.append(metric['acc_real'] * 100) acc_each_lower.append(metric['acc_lower'] * 100) acc_each_ingore_space.append(metric['acc_ignore_space'] * 100) acc_each_ingore_space_lower.append( metric['acc_ignore_space_lower'] * 100) acc_each_ignore_space_symbol.append( metric['acc_ignore_space_symbol'] * 100) acc_each_lower_ignore_space_symbol.append( metric['acc_ignore_space_lower_symbol'] * 100) acc_each_dis.append(metric['norm_edit_dis']) acc_each_num.append(metric['num_samples']) trainer.logger.info('metric eval ***************') csv_w.writerow([datadir]) for k, v in metric.items(): trainer.logger.info('{}:{}'.format(k, v)) if 'each' in k: csv_w.writerow([k] + v) if 'each_len' in k: each_len[k] = each_len.get(k, []) + [np.array(v)] if 'each_ratio' in k: each_ratio[k] = each_ratio.get(k, []) + [np.array(v)] data_name = [ data_n[:-1].split('/')[-1] if data_n[-1] == '/' else data_n.split('/')[-1] for data_n in data_dirs ] csv_w.writerow(['-'] + data_name + ['arithmetic_avg'] + ['weighted_avg']) csv_w.writerow([''] + acc_each_num) avg1 = np.array(acc_each) * np.array(acc_each_num) / sum(acc_each_num) csv_w.writerow(['acc'] + acc_each + [sum(acc_each) / len(acc_each)] + [avg1.sum().tolist()]) print(acc_each + [sum(acc_each) / len(acc_each)] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_dis) * np.array(acc_each_num) / sum( acc_each_num) csv_w.writerow(['norm_edit_dis'] + acc_each_dis + [sum(acc_each_dis) / len(acc_each)] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_real) * np.array(acc_each_num) / sum( acc_each_num) csv_w.writerow(['acc_real'] + acc_each_real + [sum(acc_each_real) / len(acc_each_real)] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_lower) * np.array(acc_each_num) / sum( acc_each_num) csv_w.writerow(['acc_lower'] + acc_each_lower + [sum(acc_each_lower) / len(acc_each_lower)] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_ingore_space) * np.array(acc_each_num) / sum( acc_each_num) csv_w.writerow( ['acc_ignore_space'] + acc_each_ingore_space + [sum(acc_each_ingore_space) / len(acc_each_ingore_space)] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_ingore_space_lower) * np.array( acc_each_num) / sum(acc_each_num) csv_w.writerow(['acc_ignore_space_lower'] + acc_each_ingore_space_lower + [ sum(acc_each_ingore_space_lower) / len(acc_each_ingore_space_lower) ] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_ignore_space_symbol) * np.array( acc_each_num) / sum(acc_each_num) csv_w.writerow(['acc_ignore_space_symbol'] + acc_each_ignore_space_symbol + [ sum(acc_each_ignore_space_symbol) / len(acc_each_ignore_space_symbol) ] + [avg1.sum().tolist()]) avg1 = np.array(acc_each_lower_ignore_space_symbol) * np.array( acc_each_num) / sum(acc_each_num) csv_w.writerow(['acc_ignore_space_lower_symbol'] + acc_each_lower_ignore_space_symbol + [ sum(acc_each_lower_ignore_space_symbol) / len(acc_each_lower_ignore_space_symbol) ] + [avg1.sum().tolist()]) sum_all = np.array(each_len['each_len_num']).sum(0) for k, v in each_len.items(): if k != 'each_len_num': v_sum_weight = (np.array(v) * np.array(each_len['each_len_num'])).sum(0) sum_all_pad = np.where(sum_all == 0, 1., sum_all) v_all = v_sum_weight / sum_all_pad v_all = np.where(sum_all == 0, 0., v_all) csv_w.writerow([k] + v_all.tolist()) else: csv_w.writerow([k] + sum_all.tolist()) sum_all = np.array(each_ratio['each_ratio_num']).sum(0) for k, v in each_ratio.items(): if k != 'each_ratio_num': v_sum_weight = (np.array(v) * np.array(each_ratio['each_ratio_num'])).sum(0) sum_all_pad = np.where(sum_all == 0, 1., sum_all) v_all = v_sum_weight / sum_all_pad v_all = np.where(sum_all == 0, 0., v_all) csv_w.writerow([k] + v_all.tolist()) else: csv_w.writerow([k] + sum_all.tolist()) file_csv.close() if __name__ == '__main__': main()