import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) import math import time import cv2 import numpy as np from openrec.postprocess import build_post_process from openrec.preprocess import create_operators, transform from tools.engine import Config from tools.infer.onnx_engine import ONNXEngine from tools.infer.utility import check_gpu, parse_args from tools.utils.logging import get_logger from tools.utils.utility import check_and_read, get_image_file_list logger = get_logger() class TextRecognizer(ONNXEngine): def __init__(self, args): if args.rec_model_dir is None or not os.path.exists( args.rec_model_dir): raise Exception( f'args.rec_model_dir is set to {args.rec_model_dir}, but it is not exists' ) onnx_path = os.path.join(args.rec_model_dir, 'model.onnx') config_path = os.path.join(args.rec_model_dir, 'config.yaml') super(TextRecognizer, self).__init__(onnx_path, args.use_gpu) self.rec_image_shape = [ int(v) for v in args.rec_image_shape.split(',') ] self.rec_batch_num = args.rec_batch_num self.rec_algorithm = args.rec_algorithm cfg = Config(config_path).cfg self.ops = create_operators(cfg['Transforms'][1:]) self.postprocess_op = build_post_process(cfg['PostProcess']) def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape assert imgC == img.shape[2] imgW = int((imgH * max_wh_ratio)) h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def __call__(self, img_list): img_num = len(img_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) rec_res = [['', 0.0]] * img_num batch_num = self.rec_batch_num st = time.time() for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] imgC, imgH, imgW = self.rec_image_shape[:3] max_wh_ratio = imgW / imgH # max_wh_ratio = 0 for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): if self.rec_algorithm == 'nrtr': norm_img = transform({'image': img_list[indices[ino]]}, self.ops)[0] else: norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() preds = self.run(norm_img_batch) if len(preds) == 1: preds = preds[0] rec_result = self.postprocess_op({'res': preds}) for rno in range(len(rec_result)): rec_res[indices[beg_img_no + rno]] = rec_result[rno] return rec_res, time.time() - st def main(args): args.use_gpu = check_gpu(args.use_gpu) image_file_list = get_image_file_list(args.image_dir) text_recognizer = TextRecognizer(args) valid_image_file_list = [] img_list = [] # warmup 2 times if args.warmup: img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8) for i in range(2): text_recognizer([img] * int(args.rec_batch_num)) for image_file in image_file_list: img, flag, _ = check_and_read(image_file) if not flag: img = cv2.imread(image_file) if img is None: logger.info(f'error in loading image:{image_file}') continue valid_image_file_list.append(image_file) img_list.append(img) rec_res, _ = text_recognizer(img_list) for ino in range(len(img_list)): logger.info(f'result of {valid_image_file_list[ino]}:{rec_res[ino]}') if __name__ == '__main__': main(parse_args())