Spaces:
Runtime error
Runtime error
File size: 7,564 Bytes
5b1f377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
{
"cells": [
{
"cell_type": "code",
"source": [
"# %%capture\n",
"# # Installs Unsloth, Xformers (Flash Attention) and all other packages!\n",
"!pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\" --quiet\n",
"\n",
"# We have to check which Torch version for Xformers (2.3 -> 0.0.27)\n",
"from torch import __version__; from packaging.version import Version as V\n",
"xformers = \"xformers==0.0.27\" if V(__version__) < V(\"2.4.0\") else \"xformers\"\n",
"!pip install --no-deps {xformers} \"trl<0.9.0\" peft accelerate bitsandbytes triton --quiet\n",
"\n",
"!pip install peft --quiet\n",
"!pip install --upgrade --no-cache-dir \"transformers<4.45.0\" --quiet # Reason: https://github.com/unslothai/unsloth/issues/1061\n",
"\n",
"!pip install -q gradio"
],
"metadata": {
"id": "g0gl_TBTXRYC",
"outputId": "021bc2e8-c036-44af-f8b9-37953799b780",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import gradio as gr\n",
"import random\n",
"import time\n",
"import os\n",
"from unsloth import FastLanguageModel\n",
"import torch\n",
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
"dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
"\n",
"huggingface_token = \"\"\n",
"\n",
"if True:\n",
" from unsloth import FastLanguageModel\n",
" model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name = \"traversaal-llm-regional-languages/Unsloth_Urdu_Llama3_1_4bit_PF100\", # YOUR MODEL YOU USED FOR TRAINING\n",
" max_seq_length = max_seq_length,\n",
" dtype = dtype,\n",
" load_in_4bit = load_in_4bit,\n",
" token = huggingface_token,\n",
" )\n",
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
"\n",
"\n",
"alpaca_prompt = \"\"\"{0}\\nInput: {1}\\nOutput: \"\"\"\n",
"\n",
"def generate_text(prompt):\n",
" # Format the prompt with instruction and input, and leave output prompt blank\n",
" formatted_prompt = alpaca_prompt.format(\n",
" \"دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔\", # instruction\n",
" prompt # user input\n",
" )\n",
"\n",
" # Tokenize the prompt and move tensors to GPU\n",
" inputs = tokenizer([formatted_prompt], return_tensors=\"pt\").to(\"cuda\")\n",
"\n",
" # Generate output from the model\n",
" outputs = model.generate(**inputs, max_new_tokens=500, use_cache=True)\n",
"\n",
" # Decode the output and remove the instruction + input part\n",
" generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
" # Remove the prompt part by splitting on \"Output:\" and returning only generated part\n",
" result = generated_text.split(\"Output:\")[-1].strip()\n",
"\n",
" return result\n",
"\n",
"iface = gr.Interface(\n",
" fn=generate_text,\n",
" inputs=gr.Textbox(lines=2, placeholder=\"Enter your prompt here...\"),\n",
" examples=['میں کراچی جانا چاہتا ہوں، وہاں کے کچھ بہترین مقامات کون سے ہیں؟',\n",
" 'amazing food locations in Singapore',\n",
" 'best activities in London'],\n",
" outputs=\"text\",\n",
" title=\"Urdu Chatbot - Powered by traversaal-urdu-llama-3.1-8b\",\n",
" description=\"Ask me anything in Urdu!\",\n",
")\n",
"\n",
"iface.launch()\n"
],
"metadata": {
"id": "SM6OLuM5gve7",
"outputId": "04b8f693-5fee-4ad0-9265-892a6fad028c",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 796
}
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
"==((====))== Unsloth 2024.9.post4: Fast Llama patching. Transformers = 4.44.2.\n",
" \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.\n",
"O^O/ \\_/ \\ Pytorch: 2.4.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n",
"\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post1. FA2 = False]\n",
" \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
"Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Unsloth 2024.9.post4 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
"\n",
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
"* Running on public URL: https://a0d6ffc6163d5231c4.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<div><iframe src=\"https://a0d6ffc6163d5231c4.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": []
},
"metadata": {},
"execution_count": 2
}
]
}
],
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"accelerator": "GPU"
},
"nbformat": 4,
"nbformat_minor": 0
} |