File size: 12,845 Bytes
e4e0162
 
 
 
fb2af4d
e4e0162
ddbc00e
df9efc6
e4e0162
 
 
a3cc2e5
967234c
 
e4e0162
 
 
a3cc2e5
e82a1de
 
 
f9e1a26
 
3ba79f7
8e792c1
615bca3
8e792c1
e4e0162
df9efc6
 
e0f5344
df9efc6
e0f5344
df9efc6
ae1f197
 
 
f320162
5a9fb13
 
f29cff9
ae1f197
efb5973
2962fbd
ae1f197
f29cff9
fbeb86b
f320162
f29cff9
ae1f197
40b135b
 
 
 
 
 
 
 
 
 
 
ae1f197
ea006a3
e4e0162
 
 
 
 
 
 
 
 
 
cd41564
ea006a3
 
 
 
99e5af8
 
 
ea006a3
 
40b135b
e4f6366
 
 
f320162
ea006a3
f320162
ea006a3
 
f397db8
ea006a3
 
e4e0162
5692092
 
cd41564
 
a80d4f2
 
cd41564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5692092
 
d9d28c8
 
7036129
5692092
 
 
 
 
 
 
 
 
 
 
 
d9d28c8
7036129
5692092
7036129
5692092
 
 
 
 
 
 
 
 
 
d9d28c8
 
7036129
5692092
 
 
 
 
 
 
 
 
 
 
 
d9d28c8
7036129
5692092
7036129
5692092
 
 
 
 
 
 
 
0c404dc
c9cd053
 
7036129
0c404dc
 
 
 
 
 
 
 
 
 
 
 
7036129
 
0c404dc
7036129
0c404dc
 
 
 
 
 
5692092
 
 
c9cd053
 
7036129
5692092
 
 
 
 
 
 
 
 
 
 
 
7036129
 
5692092
7036129
5692092
 
 
 
 
 
f320162
 
24b94fd
4e460ca
 
 
e4e0162
c9cd053
e4e0162
 
 
 
 
 
 
 
4e460ca
6b9f2b7
e4e0162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f5344
f320162
 
e4e0162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346e2ba
 
 
f320162
 
4e460ca
24b94fd
e51c397
e4e0162
 
 
0c404dc
5692092
 
 
 
0c404dc
cb13d58
 
e4e0162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
import os
#ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
token = os.getenv("HF_TOKEN")
models_og=[
    "google/gemma-7b",
    "google/gemma-7b-it",
    "google/gemma-2b",
    "google/gemma-2b-it",
    "meta-llama/Llama-2-7b-chat-hf",
    "codellama/CodeLlama-70b-Instruct-hf",
    "openchat/openchat-3.5-0106",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mixtral-8x7B-Instruct-v0.2",
    "1bitLLM/bitnet_b1_58-3B",
    "1bitLLM/bitnet_b1_58-large",
    "1bitLLM/bitnet_b1_58-xl",
    "microsoft/WizardLM-2-8x22B",
    "microsoft/WizardLM-2-7B",
    "Qwen/Qwen1.5-7B-Chat-GGUF",
    "meta-llama/Meta-Llama-3-8B",
    "openai-community/gpt2",
    
]
models=[
    "facebook/MobileLLM-125M",
    "facebook/MobileLLM-350M",
    "facebook/MobileLLM-600M",
    "facebook/MobileLLM-1B",
]
client_z=[]


def load_models(inp,new_models):
    if not new_models:
        new_models=models
    out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()]
    print(type(inp))
    print(inp)
    #print(new_models[inp[0]])
    client_z.clear()
    for z,ea in enumerate(inp):
        client_z.append(InferenceClient(new_models[inp[z]],token=token))
        out_box[z]=(gr.update(label=new_models[inp[z]]))
    return out_box[0],out_box[1],out_box[2],out_box[3]

def format_prompt_default(message, history):
    prompt = ""
    if history:
        #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
        for user_prompt, bot_response in history:
            prompt += f"{user_prompt}\n"
            print(prompt)
            prompt += f"{bot_response}\n"
            print(prompt)
    prompt += f"{message}\n"
    return prompt

def format_prompt_gemma(message, history):
    prompt = ""
    if history:
        #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
        for user_prompt, bot_response in history:
            prompt += f"{user_prompt}\n"
            print(prompt)
            prompt += f"{bot_response}\n"
            print(prompt)
    prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
    return prompt

   
def format_prompt_mixtral(message, history):
    prompt = "<s>"
    if history:
        for user_prompt, bot_response in history:
            prompt += f"[INST] {user_prompt} [/INST]"
            prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def format_prompt_choose(message, history, model_name, new_models=None):
    if not new_models:
        new_models=models
    if "gemma" in new_models[model_name].lower() and "it" in new_models[model_name].lower():
        return format_prompt_gemma(message,history)
    if "mixtral" in new_models[model_name].lower():
        return format_prompt_mixtral(message,history)
    else:
        return format_prompt_mixtral(message,history)



mega_hist=[[],[],[],[]]
def chat_inf_tree(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        client=client_z[int(hid_val)-1]
        if history:
            mega_hist[hid_val-1]=history
            #history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1])
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            output += response.token.text
            yield [(prompt,output)]
        mega_hist[hid_val-1].append((prompt,output))
        yield mega_hist[hid_val-1]
    else:
        yield None




def chat_inf_a(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '
        client1=client_z[int(hid_val)-1]
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[0])
        stream1 = client1.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream1:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None


def chat_inf_b(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '        
        client2=client_z[int(hid_val)-1]
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[1])
        stream2 = client2.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream2:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None

def chat_inf_c(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '           
        client3=client_z[int(hid_val)-1]
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[2])
        stream3 = client3.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream3:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None

def chat_inf_d(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
        if system_prompt:
            system_prompt=f'{system_prompt}, '           
        client4=client_z[int(hid_val)-1]
        if not history:
            history = []
            hist_len=0
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[3])
        stream4 = client4.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream4:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None        
def add_new_model(inp, cur):
    cur.append(inp)
    return cur,gr.update(choices=[z for z in cur])
def load_new(models=models):
    return models
    
def clear_fn():
    return None,None,None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
    if inp==True:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))

with gr.Blocks() as app:
    new_models=gr.State([])
    gr.HTML("""<center><h1 style='font-size:xx-large;'>Chatbot Model Compare</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
    with gr.Row():
        chat_a = gr.Chatbot(height=500)
        chat_b = gr.Chatbot(height=500)
    with gr.Row():
        chat_c = gr.Chatbot(height=500)
        chat_d = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                sys_inp = gr.Textbox(label="System Prompt (optional)")
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn=gr.Button("Stop")
                            clear_btn=gr.Button("Clear")                
                client_choice=gr.Dropdown(label="Models",type='index', choices=[c for c in models],max_choices=4,multiselect=True,interactive=True)
                add_model=gr.Textbox(label="New Model")
                add_btn=gr.Button("Add Model")
            with gr.Column(scale=1):
                with gr.Group():
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
                    temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
        with gr.Accordion(label="Screenshot",open=False):
            with gr.Row():
                with gr.Column(scale=3):
                    im_btn=gr.Button("Screenshot")
                    img=gr.Image(type='filepath')
                with gr.Column(scale=1):
                    with gr.Row():
                        im_height=gr.Number(label="Height",value=5000)
                        im_width=gr.Number(label="Width",value=500)
                    wait_time=gr.Number(label="Wait Time",value=3000)
                    theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
                    chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
    hid1=gr.Number(value=1,visible=False)        
    hid2=gr.Number(value=2,visible=False)        
    hid3=gr.Number(value=3,visible=False)        
    hid4=gr.Number(value=4,visible=False)    

    app.load(load_new,None,new_models)
    add_btn.click(add_new_model,[add_model,new_models],[new_models,client_choice])
    client_choice.change(load_models,[client_choice,new_models],[chat_a,chat_b,chat_c,chat_d])

    #im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
    #chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
    
    go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf_a,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a)
    go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf_b,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b)
    go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf_c,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c)
    go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf_d,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d)
    
    stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4])
    clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d])
app.queue(default_concurrency_limit=10).launch()