import gradio as gr from PIL import Image import torch import torchvision.models as models import torchvision.transforms as transforms import cv2 import numpy as np import openpyxl import os from tkinter import filedialog # Load the pre-trained EfficientNet-B7 model model = models.efficientnet_b7(pretrained=True) model.eval() # Define the transformations to be applied to the input image transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def predict_house_area(room_id, excel_file, image_files): total_area_sqm = 0 predicted_areas = [] # Check if the excel_file is provided if excel_file is not None: # Load the existing Excel workbook workbook = openpyxl.load_workbook(excel_file.name) worksheet = workbook.active else: # Create a new Excel workbook workbook = openpyxl.Workbook() worksheet = workbook.active # Write the headers to the worksheet worksheet.cell(row=1, column=1).value = "Room ID" worksheet.cell(row=1, column=2).value = "Image File" worksheet.cell(row=1, column=3).value = "Predicted Area (sqm)" # Get the last row index to append new data last_row_index = worksheet.max_row if worksheet.max_row else 1 # Loop over all the images for i, image_file in enumerate(image_files): # Load the input image img = Image.open(image_file.name) # Extract the image file name from the path image_file_name = os.path.basename(image_file.name) # Check if the image is PNG and convert to JPEG if it is if img.format == "PNG": # Convert the image to RGB format img = img.convert("RGB") # Apply the transformations to the input image img_transformed = transform(img) # Add a batch dimension to the transformed image tensor img_transformed_batch = torch.unsqueeze(img_transformed, 0) # Use the pre-trained model to make a prediction on the input image with torch.no_grad(): output = model(img_transformed_batch) # Convert the output tensor to a probability distribution using softmax softmax = torch.nn.Softmax(dim=1) output_probs = softmax(output) # Extract the predicted class (house square footage) from the output probabilities predicted_class = torch.argmax(output_probs) # Calculate the predicted area based on the predicted class predicted_area_sqm = 0 if predicted_class in [861, 648, 594, 894, 799, 896, 454]: # Convert to grayscale and apply adaptive thresholding gray = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) mask = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2) # Apply Canny edge detection to the binary mask edges = cv2.Canny(mask, 30, 100) # Apply dilation to fill gaps in the contour kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) dilated = cv2.dilate(edges, kernel, iterations=2) eroded = cv2.erode(dilated, kernel, iterations=1) # Find contours in binary mask contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find largest contour and calculate area max_area = 0 for c in contours: area = cv2.contourArea(c) if area > max_area: max_area = area # Convert pixel area to square meters pixels_per_meter = 300 # adjust this value based on your image resolution and actual room dimensions predicted_area_sqm = (max_area + 10) / (2 * pixels_per_meter ** 2) else: predicted_area_sqft = predicted_class.item() predicted_area_sqm = predicted_area_sqft * 0.092903 / 4.2 # Add the predicted area to the sum total_area_sqm += predicted_area_sqm # Add the predicted area to the list of predicted areas predicted_areas.append(predicted_area_sqm) # Write the room ID, image file name, and predicted area to the worksheet worksheet.cell(row=last_row_index + i + 1, column=1).value = room_id worksheet.cell(row=last_row_index + i + 1, column=2).value = image_file_name worksheet.cell(row=last_row_index + i + 1, column=3).value = predicted_area_sqm # Save the workbook to a temporary file temp_file = "predicted_areas.xlsx" workbook.save(temp_file) return f"Sum of predicted house square footage: {total_area_sqm:.2f} square meters", temp_file inputs = [ gr.inputs.Textbox(label = "Mã Phòng" , type = "text"), gr.inputs.File(label="Excel File", type="file"), gr.inputs.File(label="Images", type="file", file_count="multiple") ] outputs = [ gr.outputs.Textbox(label="Sum of Predicted House Square Footage"), gr.outputs.File(label="Excel Result") ] interface = gr.Interface( fn=predict_house_area, inputs=inputs, outputs=outputs, title="House Predictor", allow_flagging="never" # Disable flag button ) if __name__ == "__main__": interface.launch()