VTTS-speechT5 / src /pynote_speaker_embedding.py
linh-truong's picture
init
5c60553
raw
history blame
505 Bytes
# import torch
# from pyannote.audio import Model, Inference
# speaker_model = Model.from_pretrained("pyannote/embedding",
# use_auth_token="")
# inference = Inference(speaker_model, window="whole")
# def create_speaker_embedding(audio_dir):
# with torch.no_grad():
# embedding = inference(audio_dir)
# embedding = torch.tensor([[embedding]])
# speaker_embeddings = torch.nn.functional.normalize(embedding, dim=-1)
# return speaker_embeddings