HideMe / app.py
matthewfarant's picture
Update app.py
80c3ca8
raw
history blame
6.12 kB
import gradio as gr
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.patches as patches
from facenet_pytorch import InceptionResnetV1, MTCNN
import mtcnn
import torch
import shutil
from PIL import Image
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# Current directory
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
def save_uploaded_files(uploaded_file_paths, folder):
if not os.path.exists(folder):
os.makedirs(folder)
else:
shutil.rmtree(folder, ignore_errors=True)
os.makedirs(folder)
for uploaded_file_path in uploaded_file_paths:
shutil.move(uploaded_file_path, os.path.join(folder, os.path.basename(uploaded_file_path)))
def face_detection(img, threshold=0.9, return_coords=True):
# Detection
detector = mtcnn.MTCNN()
faces = detector.detect_faces(img)
# Create a list to store face coordinates and cropped faces
face_list = []
face_coords = []
# Draw bounding boxes and save each face as a separate image
for i, face in enumerate(faces):
if face['confidence']>= threshold:
x, y, width, height = face['box']
# Append face coordinates to the list
face_coords.append((x, y, width, height))
# Create a rectangle patch
rect = patches.Rectangle((x, y), width, height, linewidth=2, edgecolor='orange', facecolor='none')
# Add the rectangle to the plot
plt.gca().add_patch(rect)
# Crop the face and append to the list
face_img = img[y:y+height, x:x+width]
face_list.append(face_img)
else:
continue
if return_coords:
return face_list, face_coords
else:
return face_list
def generate_combined_reference():
image_paths = []
for image in os.listdir("reference"):
image_paths.append("reference/" + image)
# Open each image and resize or pad to the dimensions of the largest image
max_width, max_height = 0, 0
images_resized = []
for path in image_paths:
image = Image.open(path)
width, height = image.size
max_width = max(max_width, width)
max_height = max(max_height, height)
images_resized.append(image.resize((max_width, max_height)))
# Create a new blank image with the combined width and the total height
combined_image = Image.new("RGB", (max_width * len(images_resized), max_height))
# Paste each image into the combined image
for i, image in enumerate(images_resized):
combined_image.paste(image, (i * max_width, 0))
# Save the combined image
combined_image.save("combined_reference.jpg")
return "Created combined reference image."
def img_to_encoding(img):
model = InceptionResnetV1(pretrained='vggface2').eval()
img = cv2.resize(img, (160, 160))
img = np.expand_dims(img, axis = 0)
img = img / 255.0 # Normalize pixel values
img = torch.tensor(img.transpose(0, 3, 1, 2), dtype = torch.float32) # Adjust image format for PyTorch
encoding = model(img)
return encoding.flatten().detach().numpy()
def process_image():
# Load group photo in "testing" folder
group_photo_path = "testing/"
group_photo = None
for image in os.listdir(group_photo_path):
group_photo = cv2.imread(group_photo_path + image)
break
if group_photo is None:
return "No image found in testing folder."
elif len(os.listdir(group_photo_path)) > 1:
return "Can only process one image at a time."
# Face detection
group_photo_faces, group_photo_face_coords = face_detection(group_photo)
# Generate reference image & do face detection
generate_combined_reference()
reference_photo = plt.imread("combined_reference.jpg")
reference_faces = face_detection(reference_photo, threshold=0.9, return_coords=False)
# Convert the reference faces & group photo into 128 dimensional vector
ref_encodings = [img_to_encoding(face) for face in reference_faces]
face_encodings = [img_to_encoding(face) for face in group_photo_faces]
# Calculate cosine similarity between each face in the group photo and each reference face
similarities = cosine_similarity(ref_encodings, face_encodings)
# compute the average similarity for each face in face_list across all reference faces
average_similarities = np.mean(similarities, axis=0)
# Blur the face with the highest average similarity in group photo
max_avg_similarity_idx = np.argmax(average_similarities)
# Coordinates of the face with the highest average similarity
(x, y, w, h) = group_photo_face_coords[max_avg_similarity_idx]
# Blur the corresponding region in group photo
img_obstruct = cv2.imread(group_photo_path + image)
if max_avg_similarity_idx >= 0.3:
img_obstruct[y:y+h, x:x+w] = cv2.blur(img_obstruct[y:y+h, x:x+w], (50, 50))
img_obstruct = cv2.cvtColor(img_obstruct, cv2.COLOR_BGR2RGB)
else:
img_obstruct = cv2.cvtColor(img_obstruct, cv2.COLOR_BGR2RGB)
# Delete all photos in reference and testing folder after processing
shutil.rmtree('reference', ignore_errors=True)
shutil.rmtree('testing', ignore_errors=True)
return img_obstruct
# Setting up Gradio Interface
def interface_fn(reference_images, group_photo):
save_uploaded_files(reference_images, 'reference')
save_uploaded_files(group_photo, 'testing')
return process_image()
iface = gr.Interface(
fn=interface_fn,
inputs=[
gr.File(file_types=["image"], file_count="multiple"),
gr.File(file_types=["image"], file_count="multiple")
],
outputs=gr.Image(),
title="Face Detection and Blurring",
description="Upload multiple reference images and a group photo. The app will process the images and return the group photo with blurred faces."
)
if __name__ == "__main__":
iface.launch()