Spaces:
Build error
Build error
import hydra | |
import torch | |
import os | |
import re | |
import pyrootutils | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler, Transformer2DModel | |
from any_res import process_anyres_image | |
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True) | |
BOI_TOKEN = '<img>' | |
BOP_TOKEN = '<patch>' | |
EOI_TOKEN = '</img>' | |
EOP_TOKEN = '</patch>' | |
IMG_TOKEN = '<img_{:05d}>' | |
resolution_grids = ['1x1'] | |
base_resolution = 448 | |
device = 'cuda:0' | |
device1 = 'cuda:1' | |
dtype = torch.float16 | |
dtype_str = 'fp16' | |
num_img_in_tokens = 64 | |
num_img_out_tokens = 64 | |
instruction_prompt = '[INST] {instruction} [/INST]\n' | |
save_dir = 'vis' | |
os.makedirs(save_dir, exist_ok=True) | |
tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer_224loc_anyres.yaml' | |
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml' | |
visual_encoder_cfg_path = 'configs/visual_encoder/qwen_vitg_448.yaml' | |
llm_cfg_path = 'configs/clm_models/llm_seed_x_edit.yaml' | |
agent_cfg_path = 'configs/clm_models/agent_seed_x_edit.yaml' | |
adapter_cfg_path = 'configs/sdxl_adapter/sdxl_qwen_vit_resampler_l4_q64_full_with_latent_image_pretrain_no_normalize.yaml' | |
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml' | |
diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0' | |
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path) | |
tokenizer = hydra.utils.instantiate(tokenizer_cfg) | |
image_transform_cfg = OmegaConf.load(image_transform_cfg_path) | |
image_transform = hydra.utils.instantiate(image_transform_cfg) | |
visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path) | |
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg) | |
visual_encoder.eval().to(device1, dtype=dtype) | |
print('Init visual encoder done') | |
llm_cfg = OmegaConf.load(llm_cfg_path) | |
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype) | |
print('Init llm done.') | |
agent_model_cfg = OmegaConf.load(agent_cfg_path) | |
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm) | |
agent_model.eval().to(device, dtype=dtype) | |
print('Init agent mdoel Done') | |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler") | |
print('init vae') | |
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device1, dtype=dtype) | |
print('init unet') | |
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device1, dtype=dtype) | |
adapter_cfg = OmegaConf.load(adapter_cfg_path) | |
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device1, dtype=dtype).eval() | |
discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path) | |
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device1).eval() | |
print('Init adapter done') | |
adapter.init_pipe(vae=vae, | |
scheduler=noise_scheduler, | |
visual_encoder=visual_encoder, | |
image_transform=image_transform, | |
dtype=dtype, | |
device=device1) | |
print('Init adapter pipe done') | |
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0] | |
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0] | |
bop_token_id = tokenizer.encode(BOP_TOKEN, add_special_tokens=False)[0] | |
eop_token_id = tokenizer.encode(EOP_TOKEN, add_special_tokens=False)[0] | |
grid_pinpoints = [] | |
for scale in resolution_grids: | |
s1, s2 = scale.split('x') | |
grid_pinpoints.append([int(s1)*base_resolution, int(s2)*base_resolution]) | |
grid_pinpoints = grid_pinpoints | |
image_path = 'demo_images/car.jpg' | |
instruction = 'Make it under the sunset' | |
image = Image.open(image_path).convert('RGB') | |
source_image = image.resize((1024, 1024)) | |
image_tensor, patch_pos_tensor = process_anyres_image(image, image_transform, grid_pinpoints, base_resolution) | |
embeds_cmp_mask = torch.tensor([True]*image_tensor.shape[0]).to(device, dtype=torch.bool) | |
patch_pos = [patch_pos_tensor] | |
patch_position = torch.cat(patch_pos, dim=0) | |
image_tensor = image_tensor.to(device1, dtype=dtype) | |
patch_length = image_tensor.shape[0] | |
image_tokens = '' | |
for _ in range(patch_length-1): | |
image_tokens += BOP_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN | |
image_tokens += BOI_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN | |
prompt = instruction_prompt.format_map({'instruction': image_tokens + instruction}) | |
input_ids = tokenizer.encode(prompt, add_special_tokens=False) | |
input_ids = [tokenizer.bos_token_id] + input_ids | |
input_ids = torch.tensor(input_ids).to(device, dtype=torch.long) | |
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool) | |
boi_indices = torch.where(torch.logical_or(input_ids == boi_token_id, input_ids == bop_token_id))[0].tolist() | |
eoi_indices = torch.where(torch.logical_or(input_ids == eoi_token_id, input_ids == eop_token_id))[0].tolist() | |
for boi_idx, eoi_idx in zip(boi_indices, eoi_indices): | |
ids_cmp_mask[boi_idx + 1:eoi_idx] = True | |
input_ids = input_ids.unsqueeze(0) | |
ids_cmp_mask = ids_cmp_mask.unsqueeze(0) | |
with torch.no_grad(): | |
image_embeds = visual_encoder(image_tensor) | |
image_embeds = image_embeds.to(device) | |
output = agent_model.generate(tokenizer=tokenizer, | |
input_ids=input_ids, | |
image_embeds=image_embeds, | |
embeds_cmp_mask=embeds_cmp_mask, | |
patch_positions=patch_position, | |
ids_cmp_mask=ids_cmp_mask, | |
max_new_tokens=512, | |
num_img_gen_tokens=num_img_out_tokens) | |
text = re.sub('<[^>]*>', '', output['text']) | |
print(text) | |
if output['has_img_output']: | |
images = adapter.generate(image_embeds=output['img_gen_feat'].to(device1), latent_image=source_image, num_inference_steps=50) | |
save_path = os.path.join(save_dir, str(len(os.listdir(save_dir))) + '_' + instruction + '.jpg') | |
images[0].save(save_path) | |
torch.cuda.empty_cache() | |