Spaces:
Build error
Build error
import hydra | |
import torch | |
import os | |
import pyrootutils | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler | |
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True) | |
BOI_TOKEN = '<img>' | |
EOI_TOKEN = '</img>' | |
IMG_TOKEN = '<img_{:05d}>' | |
device = 'cuda:0' | |
device_2 = 'cuda:1' | |
dtype = torch.float16 | |
dtype_str = 'fp16' | |
num_img_in_tokens = 64 | |
num_img_out_tokens = 64 | |
instruction_prompt = '[INST] Generate an image: {caption} [/INST]\n' | |
tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer_224loc_anyres.yaml' | |
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml' | |
visual_encoder_cfg_path = 'configs/visual_encoder/qwen_vitg_448.yaml' | |
llm_cfg_path = 'configs/clm_models/llm_seed_x_i.yaml' | |
agent_cfg_path = 'configs/clm_models/agent_seed_x_i.yaml' | |
adapter_cfg_path = 'configs/sdxl_adapter/sdxl_qwen_vit_resampler_l4_q64_pretrain_no_normalize.yaml' | |
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml' | |
diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0' | |
save_dir = 'vis' | |
os.makedirs(save_dir, exist_ok=True) | |
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path) | |
tokenizer = hydra.utils.instantiate(tokenizer_cfg) | |
image_transform_cfg = OmegaConf.load(image_transform_cfg_path) | |
image_transform = hydra.utils.instantiate(image_transform_cfg) | |
visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path) | |
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg) | |
visual_encoder.eval().to(device_2, dtype=dtype) | |
print('Init visual encoder done') | |
llm_cfg = OmegaConf.load(llm_cfg_path) | |
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype) | |
print('Init llm done.') | |
agent_model_cfg = OmegaConf.load(agent_cfg_path) | |
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm) | |
agent_model.eval().to(device, dtype=dtype) | |
print('Init agent mdoel Done') | |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler") | |
print('init vae') | |
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device_2, dtype=dtype) | |
print('init unet') | |
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device_2, dtype=dtype) | |
adapter_cfg = OmegaConf.load(adapter_cfg_path) | |
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device_2, dtype=dtype).eval() | |
discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path) | |
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device_2).eval() | |
print('Init adapter done') | |
adapter.init_pipe(vae=vae, | |
scheduler=noise_scheduler, | |
visual_encoder=visual_encoder, | |
image_transform=image_transform, | |
discrete_model=discrete_model, | |
dtype=dtype, | |
device=device_2) | |
print('Init adapter pipe done') | |
caption = 'A cybernetic soldier, enhanced with advanced weapons systems and tactical analysis software, on a mission behind enemy lines.' | |
prompt = instruction_prompt.format_map({'caption': caption}) | |
prompt_ids = tokenizer.encode(prompt, add_special_tokens=False) | |
input_ids = torch.tensor([tokenizer.bos_token_id] + prompt_ids).to(device, dtype=torch.long).unsqueeze(0) | |
output = agent_model.generate(tokenizer=tokenizer, input_ids=input_ids, num_img_gen_tokens=num_img_out_tokens) | |
print(output['has_img_output']) | |
print(output['text']) | |
if output['has_img_output']: | |
images = adapter.generate(image_embeds=output['img_gen_feat'].to(device_2), num_inference_steps=50) | |
save_path = os.path.join(save_dir, caption.replace('.', '') + '.png') | |
images[0].save(save_path) | |
torch.cuda.empty_cache() | |