SEED-X-17B / src /processer /transforms.py
yuyingge
Add application file
590af54
raw
history blame
3.16 kB
from torchvision import transforms
from PIL import Image
def get_transform(type='clip', keep_ratio=True, image_size=224):
if type == 'clip':
transform = []
if keep_ratio:
transform.extend([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
])
else:
transform.append(transforms.Resize((image_size, image_size)))
transform.extend([
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
])
return transforms.Compose(transform)
elif type == 'clipa':
transform = []
if keep_ratio:
transform.extend([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
])
else:
transform.append(transforms.Resize((image_size, image_size)))
transform.extend([transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
return transforms.Compose(transform)
elif type == 'clipb':
transform = []
if keep_ratio:
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width),
background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height),
background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
background_color = tuple(int(x * 255) for x in (0.48145466, 0.4578275, 0.40821073))
transform.append(
transforms.Lambda(
lambda img: expand2square(img, background_color)))
transform.append(transforms.Resize((image_size, image_size)))
else:
transform.append(transforms.Resize((image_size, image_size)))
transform.extend([
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711))
])
return transforms.Compose(transform)
elif type == 'sd':
transform = []
if keep_ratio:
transform.extend([
transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
])
else:
transform.append(transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC))
transform.extend([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
return transforms.Compose(transform)
else:
raise NotImplementedError