import dataclasses from enum import auto, Enum from typing import List, Tuple import io import base64 import os from PIL import Image import copy IMG_FLAG = '' class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() def decode_image(encoded_image: str) -> Image: decoded_bytes = base64.b64decode(encoded_image.encode('utf-8')) buffer = io.BytesIO(decoded_bytes) image = Image.open(buffer) return image def encode_image(image: Image.Image, format: str = 'PNG') -> str: with io.BytesIO() as buffer: image.save(buffer, format=format) encoded_image = base64.b64encode(buffer.getvalue()).decode('utf-8') return encoded_image @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[dict] # multi-turn -> user & assistant -> {'images': [PIL.Image,], 'text': str} offset: int sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None version: str = "Unknown" skip_next: bool = False def get_prompt(self): messages = copy.deepcopy(self.messages) if self.sep_style == SeparatorStyle.SINGLE: if self.system is None or self.system == '': text = '' else: text = self.system + self.sep images = [] for message in messages: text += message['role'] + ": " + message['message']['text'] + self.sep for image_path in message['message']['images']: image = Image.open(image_path).resize((256, 256)) image_base64 = encode_image(image) images.append(image_base64) text += self.roles[1] + ":" elif self.sep_style == SeparatorStyle.LLAMA_2: b_token = "[INST] " e_token = " [/INST]" if self.system is None or self.system == '': text = '' else: text = f"<>\n{self.system}\n<>\n\n" images = [] for idx, message in enumerate(messages): # text += message['role'] + ": " + message['message']['text'] + self.sep if idx % 2 == 0: text += b_token + message['message']['text'] + e_token + self.sep else: text += message['message']['text'] + self.sep for image_path in message['message']['images']: image = Image.open(image_path) image_base64 = encode_image(image) images.append(image_base64) else: raise NotImplementedError return {'text': text, 'images': images} # def update_image_ids(self, images_ids): # image_count = 0 # for message in self.messages: # for idx in range(len(message['message']['images_ids'])): # if message['message']["images_ids"][idx] is None: # message['message']["images_ids"][idx] = images_ids[image_count] # image_count += 1 # assert len(images_ids) == image_count, print(len(images_ids), image_count) def append_message(self, role, message): self.messages.append([role, message]) def to_gradio_chatbot(self): dialog = [] for i, single_turn in enumerate(self.messages[self.offset:]): single_turn = single_turn['message'] text_list = single_turn['text'].split(IMG_FLAG) assert len(text_list) == len(single_turn['images']) + 1, print(text_list, len(single_turn['images'])) message = '' for image_idx in range(len(single_turn['images'])): # image = single_turn['images'][image_idx] # image_base64 = encode_image(image) # image_str = f'user upload image' image_path = single_turn['images'][image_idx] if image_path == '': message += text_list[image_idx] + '' else: message += text_list[image_idx] + f'![](file={image_path})' message += text_list[-1] if i % 2 == 0: dialog.append([message, None]) else: dialog[-1][-1] = message return dialog def copy(self): return Conversation(system=self.system, roles=self.roles, messages=copy.deepcopy(self.messages), offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, version=self.version) def dict(self): messages = copy.deepcopy(self.messages) for message in messages: for i in range(len(message['message']['images'])): message['message']['images'][i] = os.path.basename(message['message']['images'][i]) return { "system": self.system, "roles": self.roles, "messages": messages, "offset": self.offset, "sep": self.sep, "sep2": self.sep2, } conv_seed_vicuna = Conversation( system="", roles=("USER", "ASSISTANT"), version="v2", messages=[], offset=0, sep_style=SeparatorStyle.SINGLE, sep='\n', ) conv_seed_vicuna_system = Conversation( system="A chat between a curious user and an artificial intelligence assistant. ", roles=("USER", "ASSISTANT"), version="v2", messages=[], offset=0, sep_style=SeparatorStyle.SINGLE, sep='\n', ) conv_seed_llama2 = Conversation( system="", roles=("[INST]", "[/INST]"), version="v2", messages=[], offset=0, sep_style=SeparatorStyle.LLAMA_2, sep='\n', )