File size: 4,003 Bytes
8f558df
21fcfe6
3890132
0e31dfe
21fcfe6
8f558df
21fcfe6
02558d9
a533ef3
425e364
a533ef3
92ccacb
4d107c7
8f558df
69d7044
 
 
 
02558d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21fcfe6
c44566b
 
92ccacb
 
c1fbf73
4d107c7
92ccacb
8f558df
21fcfe6
8f558df
21fcfe6
c44566b
21fcfe6
 
c44566b
21fcfe6
 
 
 
 
 
 
 
144b5c1
82dd649
02558d9
 
 
21fcfe6
 
 
 
8f558df
dcf6d05
 
 
 
 
 
02558d9
dcf6d05
13775ff
dcf6d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df30ad6
8f558df
 
 
 
 
 
 
 
 
 
 
c44566b
8f558df
 
7890490
c44566b
8f558df
 
 
 
21fcfe6
 
8f558df
755339c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
from datetime import datetime
import numpy as np
import os

HF_TOKEN = os.environ['HF_TOKEN']
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# models = {
#     "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()

# }
def array_to_image_path(image_array):
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))
    
    # Generate a unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    
    # Save the image
    img.save(filename)
    
    # Get the full path of the saved image
    full_path = os.path.abspath(filename)
    
    return full_path
    
models = {
    "Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2-VL-7B-Instruct", 
        trust_remote_code=True, 
        token=HF_TOKEN,
        torch_dtype=torch.bfloat16,
        # attn_implementation="flash_attention_2"
    ).cuda().eval()

}

processors = {
    "Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
}

DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)"

kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

@spaces.GPU
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-7B-Instruct"):
    image_path = array_to_image_path(image)
    
    print(image_path)
    model = models[model_id]
    processor = processors[model_id]

    prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
    image = Image.fromarray(image).convert("RGB")
    messages = [
    {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image_path,
                },
                {"type": "text", "text": text_input},
            ],
        }
    ]
    
    # Preparation for inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    
    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    
    return output_text[0]

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="Qwen2-VL-7B Input"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct")
                text_input = gr.Textbox(label="Question")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")

        submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])

demo.queue(api_open=False)
demo.launch(debug=True)