File size: 18,162 Bytes
dfec228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import cv2
import itertools
import numpy as np
import random
import torch
import torch.nn.functional as F
import torch.nn as nn
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
def random_blur_kernel(probs, N_blur, sigrange_gauss, sigrange_line, wmin_line):
N = N_blur
coords = torch.from_numpy(np.stack(np.meshgrid(range(N_blur), range(N_blur), indexing='ij'), axis=-1)) - (0.5 * (N-1)) # (7,7,2)
manhat = torch.sum(torch.abs(coords), dim=-1) # (7, 7)
# nothing, default
vals_nothing = (manhat < 0.5).float() # (7, 7)
# gauss
sig_gauss = torch.rand(1)[0] * (sigrange_gauss[1] - sigrange_gauss[0]) + sigrange_gauss[0]
vals_gauss = torch.exp(-torch.sum(coords ** 2, dim=-1) /2. / sig_gauss ** 2)
# line
theta = torch.rand(1)[0] * 2.* np.pi
v = torch.FloatTensor([torch.cos(theta), torch.sin(theta)]) # (2)
dists = torch.sum(coords * v, dim=-1) # (7, 7)
sig_line = torch.rand(1)[0] * (sigrange_line[1] - sigrange_line[0]) + sigrange_line[0]
w_line = torch.rand(1)[0] * (0.5 * (N-1) + 0.1 - wmin_line) + wmin_line
vals_line = torch.exp(-dists ** 2 / 2. / sig_line ** 2) * (manhat < w_line) # (7, 7)
t = torch.rand(1)[0]
vals = vals_nothing
if t < (probs[0] + probs[1]):
vals = vals_line
else:
vals = vals
if t < probs[0]:
vals = vals_gauss
else:
vals = vals
v = vals / torch.sum(vals) # 归一化 (7, 7)
z = torch.zeros_like(v)
f = torch.stack([v,z,z, z,v,z, z,z,v], dim=0).reshape([3, 3, N, N])
return f
def get_rand_transform_matrix(image_size, d, batch_size):
Ms = np.zeros((batch_size, 2, 3, 3))
for i in range(batch_size):
tl_x = random.uniform(-d, d) # Top left corner, top
tl_y = random.uniform(-d, d) # Top left corner, left
bl_x = random.uniform(-d, d) # Bot left corner, bot
bl_y = random.uniform(-d, d) # Bot left corner, left
tr_x = random.uniform(-d, d) # Top right corner, top
tr_y = random.uniform(-d, d) # Top right corner, right
br_x = random.uniform(-d, d) # Bot right corner, bot
br_y = random.uniform(-d, d) # Bot right corner, right
rect = np.array([
[tl_x, tl_y],
[tr_x + image_size, tr_y],
[br_x + image_size, br_y + image_size],
[bl_x, bl_y + image_size]], dtype = "float32")
dst = np.array([
[0, 0],
[image_size, 0],
[image_size, image_size],
[0, image_size]], dtype = "float32")
M = cv2.getPerspectiveTransform(rect, dst)
M_inv = np.linalg.inv(M)
Ms[i, 0, :, :] = M_inv
Ms[i, 1, :, :] = M
Ms = torch.from_numpy(Ms).float()
return Ms
def get_rnd_brightness_torch(rnd_bri, rnd_hue, batch_size):
rnd_hue = torch.FloatTensor(batch_size, 3, 1, 1).uniform_(-rnd_hue, rnd_hue)
rnd_brightness = torch.FloatTensor(batch_size, 1, 1, 1).uniform_(-rnd_bri, rnd_bri)
return rnd_hue + rnd_brightness
# reference: https://github.com/mlomnitz/DiffJPEG.git
y_table = np.array(
[[16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60,
55], [14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103,
77], [24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]],
dtype=np.float32).T
y_table = nn.Parameter(torch.from_numpy(y_table))
c_table = np.empty((8, 8), dtype=np.float32)
c_table.fill(99)
c_table[:4, :4] = np.array([[17, 18, 24, 47], [18, 21, 26, 66],
[24, 26, 56, 99], [47, 66, 99, 99]]).T
c_table = nn.Parameter(torch.from_numpy(c_table))
# 1. RGB -> YCbCr
class rgb_to_ycbcr_jpeg(nn.Module):
""" Converts RGB image to YCbCr
Input:
image(tensor): batch x 3 x height x width
Outpput:
result(tensor): batch x height x width x 3
"""
def __init__(self):
super(rgb_to_ycbcr_jpeg, self).__init__()
matrix = np.array(
[[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312]], dtype=np.float32).T
self.shift = nn.Parameter(torch.tensor([0., 128., 128.]))
self.matrix = nn.Parameter(torch.from_numpy(matrix))
def forward(self, image):
image = image.permute(0, 2, 3, 1)
result = torch.tensordot(image, self.matrix, dims=1) + self.shift
result.view(image.shape)
return result
# 2. Chroma subsampling
class chroma_subsampling(nn.Module):
""" Chroma subsampling on CbCv channels
Input:
image(tensor): batch x height x width x 3
Output:
y(tensor): batch x height x width
cb(tensor): batch x height/2 x width/2
cr(tensor): batch x height/2 x width/2
"""
def __init__(self):
super(chroma_subsampling, self).__init__()
def forward(self, image):
image_2 = image.permute(0, 3, 1, 2).clone()
avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2),
count_include_pad=False)
cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1))
cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1))
cb = cb.permute(0, 2, 3, 1)
cr = cr.permute(0, 2, 3, 1)
return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)
# 3. Block splitting
class block_splitting(nn.Module):
""" Splitting image into patches
Input:
image(tensor): batch x height x width
Output:
patch(tensor): batch x h*w/64 x h x w
"""
def __init__(self):
super(block_splitting, self).__init__()
self.k = 8
def forward(self, image):
height, width = image.shape[1:3]
batch_size = image.shape[0]
image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)
# 4. DCT
class dct_8x8(nn.Module):
""" Discrete Cosine Transformation
Input:
image(tensor): batch x height x width
Output:
dcp(tensor): batch x height x width
"""
def __init__(self):
super(dct_8x8, self).__init__()
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos(
(2 * y + 1) * v * np.pi / 16)
alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
#
self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() )
def forward(self, image):
image = image - 128
result = self.scale * torch.tensordot(image, self.tensor, dims=2)
result.view(image.shape)
return result
# 5. Quantization
class y_quantize(nn.Module):
""" JPEG Quantization for Y channel
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(y_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.y_table = y_table
def forward(self, image):
image = image.float() / (self.y_table * self.factor)
image = self.rounding(image)
return image
class c_quantize(nn.Module):
""" JPEG Quantization for CrCb channels
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(c_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.c_table = c_table
def forward(self, image):
image = image.float() / (self.c_table * self.factor)
image = self.rounding(image)
return image
class compress_jpeg(nn.Module):
""" Full JPEG compression algortihm
Input:
imgs(tensor): batch x 3 x height x width
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
"""
def __init__(self, rounding=torch.round, factor=1):
super(compress_jpeg, self).__init__()
self.l1 = nn.Sequential(
rgb_to_ycbcr_jpeg(),
chroma_subsampling()
)
self.l2 = nn.Sequential(
block_splitting(),
dct_8x8()
)
self.c_quantize = c_quantize(rounding=rounding, factor=factor)
self.y_quantize = y_quantize(rounding=rounding, factor=factor)
def forward(self, image):
y, cb, cr = self.l1(image*255)
components = {'y': y, 'cb': cb, 'cr': cr}
for k in components.keys():
comp = self.l2(components[k])
if k in ('cb', 'cr'):
comp = self.c_quantize(comp)
else:
comp = self.y_quantize(comp)
components[k] = comp
return components['y'], components['cb'], components['cr']
# -5. Dequantization
class y_dequantize(nn.Module):
""" Dequantize Y channel
Inputs:
image(tensor): batch x height x width
factor(float): compression factor
Outputs:
image(tensor): batch x height x width
"""
def __init__(self, factor=1):
super(y_dequantize, self).__init__()
self.y_table = y_table
self.factor = factor
def forward(self, image):
return image * (self.y_table * self.factor)
class c_dequantize(nn.Module):
""" Dequantize CbCr channel
Inputs:
image(tensor): batch x height x width
factor(float): compression factor
Outputs:
image(tensor): batch x height x width
"""
def __init__(self, factor=1):
super(c_dequantize, self).__init__()
self.factor = factor
self.c_table = c_table
def forward(self, image):
return image * (self.c_table * self.factor)
# -4. Inverse DCT
class idct_8x8(nn.Module):
""" Inverse discrete Cosine Transformation
Input:
dcp(tensor): batch x height x width
Output:
image(tensor): batch x height x width
"""
def __init__(self):
super(idct_8x8, self).__init__()
alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
self.alpha = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha)).float())
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos(
(2 * v + 1) * y * np.pi / 16)
self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
def forward(self, image):
image = image * self.alpha
result = 0.25 * torch.tensordot(image, self.tensor, dims=2) + 128
result.view(image.shape)
return result
# -3. Block joining
class block_merging(nn.Module):
""" Merge pathces into image
Inputs:
patches(tensor) batch x height*width/64, height x width
height(int)
width(int)
Output:
image(tensor): batch x height x width
"""
def __init__(self):
super(block_merging, self).__init__()
def forward(self, patches, height, width):
k = 8
batch_size = patches.shape[0]
image_reshaped = patches.view(batch_size, height//k, width//k, k, k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, height, width)
# -2. Chroma upsampling
class chroma_upsampling(nn.Module):
""" Upsample chroma layers
Input:
y(tensor): y channel image
cb(tensor): cb channel
cr(tensor): cr channel
Ouput:
image(tensor): batch x height x width x 3
"""
def __init__(self):
super(chroma_upsampling, self).__init__()
def forward(self, y, cb, cr):
def repeat(x, k=2):
height, width = x.shape[1:3]
x = x.unsqueeze(-1)
x = x.repeat(1, 1, k, k)
x = x.view(-1, height * k, width * k)
return x
cb = repeat(cb)
cr = repeat(cr)
return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3)
# -1: YCbCr -> RGB
class ycbcr_to_rgb_jpeg(nn.Module):
""" Converts YCbCr image to RGB JPEG
Input:
image(tensor): batch x height x width x 3
Outpput:
result(tensor): batch x 3 x height x width
"""
def __init__(self):
super(ycbcr_to_rgb_jpeg, self).__init__()
matrix = np.array(
[[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]],
dtype=np.float32).T
self.shift = nn.Parameter(torch.tensor([0, -128., -128.]))
self.matrix = nn.Parameter(torch.from_numpy(matrix))
def forward(self, image):
result = torch.tensordot(image + self.shift, self.matrix, dims=1)
result.view(image.shape)
return result.permute(0, 3, 1, 2)
class decompress_jpeg(nn.Module):
""" Full JPEG decompression algortihm
Input:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
image(tensor): batch x 3 x height x width
"""
def __init__(self, height, width, rounding=torch.round, factor=1):
super(decompress_jpeg, self).__init__()
self.c_dequantize = c_dequantize(factor=factor)
self.y_dequantize = y_dequantize(factor=factor)
self.idct = idct_8x8()
self.merging = block_merging()
self.chroma = chroma_upsampling()
self.colors = ycbcr_to_rgb_jpeg()
self.height, self.width = height, width
def forward(self, y, cb, cr):
components = {'y': y, 'cb': cb, 'cr': cr}
for k in components.keys():
if k in ('cb', 'cr'):
comp = self.c_dequantize(components[k])
height, width = int(self.height/2), int(self.width/2)
else:
comp = self.y_dequantize(components[k])
height, width = self.height, self.width
comp = self.idct(comp)
components[k] = self.merging(comp, height, width)
#
image = self.chroma(components['y'], components['cb'], components['cr'])
image = self.colors(image)
image = torch.min(255*torch.ones_like(image),
torch.max(torch.zeros_like(image), image))
return image/255
def diff_round(x):
""" Differentiable rounding function
Input:
x(tensor)
Output:
x(tensor)
"""
return torch.round(x) + (x - torch.round(x))**3
def round_only_at_0(x):
cond = (torch.abs(x) < 0.5).float()
return cond * (x ** 3) + (1 - cond) * x
def quality_to_factor(quality):
""" Calculate factor corresponding to quality
Input:
quality(float): Quality for jpeg compression
Output:
factor(float): Compression factor
"""
if quality < 50:
quality = 5000. / quality
else:
quality = 200. - quality*2
return quality / 100.
def jpeg_compress_decompress(image,
# downsample_c=True,
rounding=round_only_at_0,
quality=80):
# image_r = image * 255
height, width = image.shape[2:4]
# orig_height, orig_width = height, width
# if height % 16 != 0 or width % 16 != 0:
# # Round up to next multiple of 16
# height = ((height - 1) // 16 + 1) * 16
# width = ((width - 1) // 16 + 1) * 16
# vpad = height - orig_height
# wpad = width - orig_width
# top = vpad // 2
# bottom = vpad - top
# left = wpad // 2
# right = wpad - left
# #image = tf.pad(image, [[0, 0], [top, bottom], [left, right], [0, 0]], 'SYMMETRIC')
# image = torch.pad(image, [[0, 0], [0, vpad], [0, wpad], [0, 0]], 'reflect')
factor = quality_to_factor(quality)
compress = compress_jpeg(rounding=rounding, factor=factor).to(image.device)
decompress = decompress_jpeg(height, width, rounding=rounding, factor=factor).to(image.device)
y, cb, cr = compress(image)
recovered = decompress(y, cb, cr)
return recovered.contiguous()
if __name__ == '__main__':
''' test JPEG compress and decompress'''
# img = Image.open('house.jpg')
# img = np.array(img) / 255.
# img_r = np.transpose(img, [2, 0, 1])
# img_tensor = torch.from_numpy(img_r).unsqueeze(0).float()
# recover = jpeg_compress_decompress(img_tensor)
# recover_arr = recover.detach().squeeze(0).numpy()
# recover_arr = np.transpose(recover_arr, [1, 2, 0])
# plt.subplot(121)
# plt.imshow(img)
# plt.subplot(122)
# plt.imshow(recover_arr)
# plt.show()
''' test blur '''
# blur
img = Image.open('house.jpg')
img = np.array(img) / 255.
img_r = np.transpose(img, [2, 0, 1])
img_tensor = torch.from_numpy(img_r).unsqueeze(0).float()
print(img_tensor.shape)
N_blur=7
f = random_blur_kernel(probs=[.25, .25], N_blur=N_blur, sigrange_gauss=[1., 3.], sigrange_line=[.25, 1.], wmin_line=3)
# print(f.shape)
# print(type(f))
encoded_image = F.conv2d(img_tensor, f, bias=None, padding=int((N_blur-1)/2))
encoded_image = encoded_image.detach().squeeze(0).numpy()
encoded_image = np.transpose(encoded_image, [1, 2, 0])
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(encoded_image)
plt.show()
|