|
"""SAMPLING ONLY.""" |
|
import os |
|
import torch |
|
from torch import nn |
|
import torchvision |
|
import numpy as np |
|
from tqdm import tqdm |
|
from functools import partial |
|
from PIL import Image |
|
import shutil |
|
|
|
from ldm.modules.diffusionmodules.util import ( |
|
make_ddim_sampling_parameters, |
|
make_ddim_timesteps, |
|
noise_like, |
|
) |
|
import clip |
|
from einops import rearrange |
|
import random |
|
|
|
|
|
class VGGPerceptualLoss(torch.nn.Module): |
|
def __init__(self, resize=True): |
|
super(VGGPerceptualLoss, self).__init__() |
|
blocks = [] |
|
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval()) |
|
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval()) |
|
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval()) |
|
blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval()) |
|
for bl in blocks: |
|
for p in bl.parameters(): |
|
p.requires_grad = False |
|
self.blocks = torch.nn.ModuleList(blocks) |
|
self.transform = torch.nn.functional.interpolate |
|
self.resize = resize |
|
self.register_buffer( |
|
"mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) |
|
) |
|
self.register_buffer( |
|
"std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) |
|
) |
|
|
|
def forward(self, input, target, feature_layers=[0, 1, 2, 3], style_layers=[]): |
|
input = (input - self.mean) / self.std |
|
target = (target - self.mean) / self.std |
|
if self.resize: |
|
input = self.transform( |
|
input, mode="bilinear", size=(224, 224), align_corners=False |
|
) |
|
target = self.transform( |
|
target, mode="bilinear", size=(224, 224), align_corners=False |
|
) |
|
loss = 0.0 |
|
x = input |
|
y = target |
|
for i, block in enumerate(self.blocks): |
|
x = block(x) |
|
y = block(y) |
|
if i in feature_layers: |
|
loss += torch.nn.functional.l1_loss(x, y) |
|
if i in style_layers: |
|
act_x = x.reshape(x.shape[0], x.shape[1], -1) |
|
act_y = y.reshape(y.shape[0], y.shape[1], -1) |
|
gram_x = act_x @ act_x.permute(0, 2, 1) |
|
gram_y = act_y @ act_y.permute(0, 2, 1) |
|
loss += torch.nn.functional.l1_loss(gram_x, gram_y) |
|
return loss |
|
|
|
|
|
class DCLIPLoss(torch.nn.Module): |
|
def __init__(self): |
|
super(DCLIPLoss, self).__init__() |
|
self.model, self.preprocess = clip.load("ViT-B/32", device="cuda") |
|
self.upsample = torch.nn.Upsample(scale_factor=7) |
|
self.avg_pool = torch.nn.AvgPool2d(kernel_size=16) |
|
|
|
def forward(self, image1, image2, text1, text2): |
|
text1 = clip.tokenize([text1]).to("cuda") |
|
text2 = clip.tokenize([text2]).to("cuda") |
|
image1 = image1.unsqueeze(0).cuda() |
|
image2 = image2.unsqueeze(0) |
|
image1 = self.avg_pool(self.upsample(image1)) |
|
image2 = self.avg_pool(self.upsample(image2)) |
|
image1_feat = self.model.encode_image(image1) |
|
image2_feat = self.model.encode_image(image2) |
|
text1_feat = self.model.encode_text(text1) |
|
text2_feat = self.model.encode_text(text2) |
|
d_image_feat = image1_feat - image2_feat |
|
d_text_feat = text1_feat - text2_feat |
|
similarity = torch.nn.CosineSimilarity()(d_image_feat, d_text_feat) |
|
return 1 - similarity |
|
|
|
|
|
class PLMSSampler(object): |
|
def __init__(self, model, schedule="linear", **kwargs): |
|
super().__init__() |
|
self.model = model |
|
self.ddpm_num_timesteps = model.num_timesteps |
|
self.schedule = schedule |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != torch.device("cuda"): |
|
attr = attr.to(torch.device("cuda")) |
|
setattr(self, name, attr) |
|
|
|
def make_schedule( |
|
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True |
|
): |
|
if ddim_eta != 0: |
|
raise ValueError("ddim_eta must be 0 for PLMS") |
|
self.ddim_timesteps = make_ddim_timesteps( |
|
ddim_discr_method=ddim_discretize, |
|
num_ddim_timesteps=ddim_num_steps, |
|
num_ddpm_timesteps=self.ddpm_num_timesteps, |
|
verbose=verbose, |
|
) |
|
alphas_cumprod = self.model.alphas_cumprod |
|
assert ( |
|
alphas_cumprod.shape[0] == self.ddpm_num_timesteps |
|
), "alphas have to be defined for each timestep" |
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) |
|
|
|
self.register_buffer("betas", to_torch(self.model.betas)) |
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) |
|
self.register_buffer( |
|
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) |
|
) |
|
|
|
|
|
self.register_buffer( |
|
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) |
|
) |
|
self.register_buffer( |
|
"sqrt_one_minus_alphas_cumprod", |
|
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), |
|
) |
|
self.register_buffer( |
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) |
|
) |
|
self.register_buffer( |
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) |
|
) |
|
self.register_buffer( |
|
"sqrt_recipm1_alphas_cumprod", |
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), |
|
) |
|
|
|
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( |
|
alphacums=alphas_cumprod.cpu(), |
|
ddim_timesteps=self.ddim_timesteps, |
|
eta=0.0, |
|
verbose=verbose, |
|
) |
|
self.register_buffer("ddim_sigmas", ddim_sigmas) |
|
self.register_buffer("ddim_alphas", ddim_alphas) |
|
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) |
|
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) |
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( |
|
(1 - self.alphas_cumprod_prev) |
|
/ (1 - self.alphas_cumprod) |
|
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev) |
|
) |
|
self.register_buffer( |
|
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps |
|
) |
|
|
|
@torch.no_grad() |
|
def sample(self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0., |
|
mask=None, |
|
x0=None, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
|
|
dynamic_threshold=None, |
|
**kwargs |
|
): |
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] |
|
if cbs != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) |
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
print(f'Data shape for PLMS sampling is {size}') |
|
|
|
samples, intermediates = self.plms_sampling(conditioning, size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
) |
|
return samples, intermediates |
|
|
|
@torch.no_grad() |
|
def plms_sampling( |
|
self, |
|
cond, |
|
shape, |
|
x_T=None, |
|
ddim_use_original_steps=False, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
log_every_t=100, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
): |
|
device = self.model.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
if timesteps is None: |
|
timesteps = ( |
|
self.ddpm_num_timesteps |
|
if ddim_use_original_steps |
|
else self.ddim_timesteps |
|
) |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = ( |
|
int( |
|
min(timesteps / self.ddim_timesteps.shape[0], 1) |
|
* self.ddim_timesteps.shape[0] |
|
) |
|
- 1 |
|
) |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {"x_inter": [img], "pred_x0": [img]} |
|
time_range = ( |
|
list(reversed(range(0, timesteps))) |
|
if ddim_use_original_steps |
|
else np.flip(timesteps) |
|
) |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
print(f"Running PLMS Sampling with {total_steps} timesteps") |
|
|
|
iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps) |
|
old_eps = [] |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
|
|
img_orig = self.model.q_sample( |
|
x0, ts |
|
) |
|
img = img_orig * mask + (1.0 - mask) * img |
|
|
|
outs = self.p_sample_plms( |
|
img, |
|
cond, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
old_eps=old_eps, |
|
t_next=ts_next, |
|
) |
|
img, pred_x0, e_t = outs |
|
old_eps.append(e_t) |
|
if len(old_eps) >= 4: |
|
old_eps.pop(0) |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(pred_x0, i) |
|
|
|
if index % 1 == 0 or index == total_steps - 1: |
|
intermediates["x_inter"].append(img) |
|
intermediates["pred_x0"].append(pred_x0) |
|
|
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def p_sample_plms( |
|
self, |
|
x, |
|
c, |
|
t, |
|
index, |
|
repeat_noise=False, |
|
use_original_steps=False, |
|
quantize_denoised=False, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
old_eps=None, |
|
t_next=None, |
|
): |
|
b, *_, device = *x.shape, x.device |
|
|
|
def get_model_output(x, t): |
|
if ( |
|
unconditional_conditioning is None |
|
or unconditional_guidance_scale == 1.0 |
|
): |
|
e_t = self.model.apply_model(x, t, c) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t] * 2) |
|
if isinstance(c, dict): |
|
c_in = {key: [torch.cat([unconditional_conditioning[key][0], c[key][0]])] for key in c} |
|
else: |
|
c_in = torch.cat([unconditional_conditioning, c]) |
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) |
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
|
|
if score_corrector is not None: |
|
assert self.model.parameterization == "eps" |
|
e_t = score_corrector.modify_score( |
|
self.model, e_t, x, t, c, **corrector_kwargs |
|
) |
|
|
|
return e_t |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = ( |
|
self.model.alphas_cumprod_prev |
|
if use_original_steps |
|
else self.ddim_alphas_prev |
|
) |
|
sqrt_one_minus_alphas = ( |
|
self.model.sqrt_one_minus_alphas_cumprod |
|
if use_original_steps |
|
else self.ddim_sqrt_one_minus_alphas |
|
) |
|
sigmas = ( |
|
self.model.ddim_sigmas_for_original_num_steps |
|
if use_original_steps |
|
else self.ddim_sigmas |
|
) |
|
|
|
def get_x_prev_and_pred_x0(e_t, index): |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full( |
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device |
|
) |
|
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t |
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.0: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
return x_prev, pred_x0 |
|
|
|
e_t = get_model_output(x, t) |
|
if len(old_eps) == 0: |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) |
|
e_t_next = get_model_output(x_prev, t_next) |
|
e_t_prime = (e_t + e_t_next) / 2 |
|
elif len(old_eps) == 1: |
|
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2 |
|
elif len(old_eps) == 2: |
|
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 |
|
elif len(old_eps) >= 3: |
|
|
|
e_t_prime = ( |
|
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3] |
|
) / 24 |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) |
|
|
|
return x_prev, pred_x0, e_t |
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def sample_encode_save_noise( |
|
self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0.0, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
|
|
**kwargs, |
|
): |
|
assert conditioning is not None |
|
|
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) |
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
if verbose: |
|
print(f"Data shape for PLMS sampling is {size}") |
|
|
|
samples, intermediates, x0_loop = self.plms_sampling_enc_save_noise( |
|
conditioning, |
|
size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, |
|
x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
input_image=input_image, |
|
noise_save_path=noise_save_path, |
|
verbose=verbose |
|
) |
|
return samples, intermediates, x0_loop |
|
|
|
@torch.no_grad() |
|
def plms_sampling_enc_save_noise( |
|
self, |
|
cond, |
|
shape, |
|
x_T=None, |
|
ddim_use_original_steps=False, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
log_every_t=100, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
verbose=True, |
|
): |
|
device = self.model.betas.device |
|
|
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
if timesteps is None: |
|
timesteps = ( |
|
self.ddpm_num_timesteps |
|
if ddim_use_original_steps |
|
else self.ddim_timesteps |
|
) |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = ( |
|
int( |
|
min(timesteps / self.ddim_timesteps.shape[0], 1) |
|
* self.ddim_timesteps.shape[0] |
|
) |
|
- 1 |
|
) |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {"x_inter": [img], "pred_x0": [img]} |
|
time_range = ( |
|
list(reversed(range(0, timesteps))) |
|
if ddim_use_original_steps |
|
else np.flip(timesteps) |
|
) |
|
time_range = list(range(0, timesteps)) if ddim_use_original_steps else timesteps |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
if verbose: |
|
print(f"Running PLMS Sampling with {total_steps} timesteps") |
|
iterator = tqdm(time_range[:-1], desc='PLMS Sampler', total=total_steps) |
|
else: |
|
iterator = time_range[:-1] |
|
old_eps = [] |
|
noise_images = [] |
|
for each_time in time_range: |
|
noised_image = self.model.q_sample( |
|
input_image, torch.tensor([each_time]).to(device) |
|
) |
|
noise_images.append(noised_image) |
|
|
|
|
|
x0_loop = input_image.clone() |
|
alphas = ( |
|
self.model.alphas_cumprod if ddim_use_original_steps else self.ddim_alphas |
|
) |
|
alphas_prev = ( |
|
self.model.alphas_cumprod_prev |
|
if ddim_use_original_steps |
|
else self.ddim_alphas_prev |
|
) |
|
sqrt_one_minus_alphas = ( |
|
self.model.sqrt_one_minus_alphas_cumprod |
|
if ddim_use_original_steps |
|
else self.ddim_sqrt_one_minus_alphas |
|
) |
|
sigmas = ( |
|
self.model.ddim_sigmas_for_original_num_steps |
|
if ddim_use_original_steps |
|
else self.ddim_sigmas |
|
) |
|
|
|
def get_model_output(x, t): |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t] * 2) |
|
if isinstance(cond, dict): |
|
c_in = {key: [torch.cat([unconditional_conditioning[key][0], cond[key][0]])] for key in cond} |
|
else: |
|
c_in = torch.cat([unconditional_conditioning, cond]) |
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) |
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
return e_t |
|
|
|
def get_x_prev_and_pred_x0(e_t, index, curr_x0): |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full( |
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device |
|
) |
|
|
|
|
|
pred_x0 = (curr_x0 - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index + 1], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index + 1], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index + 1], device=device) |
|
sqrt_one_minus_at = torch.full( |
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index + 1], device=device |
|
) |
|
|
|
dir_xt = (1.0 - a_t - sigma_t ** 2).sqrt() * e_t |
|
|
|
x_prev = a_t.sqrt() * pred_x0 + dir_xt |
|
|
|
return x_prev, pred_x0 |
|
|
|
for i, step in enumerate(iterator): |
|
index = i |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
e_t = get_model_output(x0_loop, ts) |
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index, x0_loop) |
|
x0_loop = x_prev |
|
|
|
|
|
|
|
img = x0_loop.clone() |
|
time_range = ( |
|
list(reversed(range(0, timesteps))) |
|
if ddim_use_original_steps |
|
else np.flip(timesteps) |
|
) |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
if verbose: |
|
print(f"Running PLMS Sampling with {total_steps} timesteps") |
|
iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps, miniters=total_steps+1, mininterval=600) |
|
else: |
|
iterator = time_range |
|
old_eps = [] |
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
img_orig = self.model.q_sample( |
|
x0, ts |
|
) |
|
img = img_orig * mask + (1.0 - mask) * img |
|
|
|
outs = self.p_sample_plms_dec_save_noise( |
|
img, |
|
cond, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
old_eps=old_eps, |
|
t_next=ts_next, |
|
input_image=input_image, |
|
noise_save_path=noise_save_path, |
|
noise_image=noise_images.pop(), |
|
) |
|
img, pred_x0, e_t = outs |
|
|
|
old_eps.append(e_t) |
|
if len(old_eps) >= 4: |
|
old_eps.pop(0) |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(pred_x0, i) |
|
|
|
if index % log_every_t == 0 or index == total_steps - 1: |
|
intermediates["x_inter"].append(img) |
|
intermediates["pred_x0"].append(pred_x0) |
|
|
|
return img, intermediates, x0_loop |
|
|
|
@torch.no_grad() |
|
def p_sample_plms_dec_save_noise( |
|
self, |
|
x, |
|
c1, |
|
t, |
|
index, |
|
repeat_noise=False, |
|
use_original_steps=False, |
|
quantize_denoised=False, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
old_eps=None, |
|
t_next=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
noise_image=None, |
|
): |
|
b, *_, device = *x.shape, x.device |
|
|
|
def get_model_output(x, t): |
|
if ( |
|
unconditional_conditioning is None |
|
or unconditional_guidance_scale == 1.0 |
|
): |
|
e_t = self.model.apply_model(x, t, c1) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t] * 2) |
|
if isinstance(c1, dict): |
|
c_in = {key: [torch.cat([unconditional_conditioning[key][0], c1[key][0]])] for key in c1} |
|
else: |
|
c_in = torch.cat([unconditional_conditioning, c1]) |
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) |
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
return e_t |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = ( |
|
self.model.alphas_cumprod_prev |
|
if use_original_steps |
|
else self.ddim_alphas_prev |
|
) |
|
sqrt_one_minus_alphas = ( |
|
self.model.sqrt_one_minus_alphas_cumprod |
|
if use_original_steps |
|
else self.ddim_sqrt_one_minus_alphas |
|
) |
|
sigmas = ( |
|
self.model.ddim_sigmas_for_original_num_steps |
|
if use_original_steps |
|
else self.ddim_sigmas |
|
) |
|
|
|
def get_x_prev_and_pred_x0(e_t, index): |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full( |
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device |
|
) |
|
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t |
|
time_curr = index * 20 + 1 |
|
|
|
img_prev = noise_image |
|
noise = img_prev - a_prev.sqrt() * pred_x0 - dir_xt |
|
|
|
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
return x_prev, pred_x0 |
|
|
|
e_t = get_model_output(x, t) |
|
if len(old_eps) == 0: |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) |
|
e_t_next = get_model_output(x_prev, t_next) |
|
e_t_prime = (e_t + e_t_next) / 2 |
|
elif len(old_eps) == 1: |
|
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2 |
|
elif len(old_eps) == 2: |
|
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 |
|
elif len(old_eps) >= 3: |
|
|
|
e_t_prime = ( |
|
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3] |
|
) / 24 |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) |
|
|
|
return x_prev, pred_x0, e_t |
|
|
|
|
|
|
|
def p_sample_plms_sampling( |
|
self, |
|
x, |
|
c1, |
|
c2, |
|
t, |
|
index, |
|
repeat_noise=False, |
|
use_original_steps=False, |
|
quantize_denoised=False, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
old_eps=None, |
|
t_next=None, |
|
input_image=None, |
|
optimizing_weight=None, |
|
noise_save_path=None, |
|
): |
|
b, *_, device = *x.shape, x.device |
|
|
|
def optimize_model_output(x, t): |
|
|
|
|
|
condition = optimizing_weight * c1 + (1 - optimizing_weight) * c2 |
|
if ( |
|
unconditional_conditioning is None |
|
or unconditional_guidance_scale == 1.0 |
|
): |
|
e_t = self.model.apply_model(x, t, condition) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t] * 2) |
|
if isinstance(condition, dict): |
|
c_in = {key: [torch.cat([unconditional_conditioning[key][0], condition[key][0]])] for key in condition} |
|
else: |
|
c_in = torch.cat([unconditional_conditioning, condition]) |
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) |
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
return e_t |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = ( |
|
self.model.alphas_cumprod_prev |
|
if use_original_steps |
|
else self.ddim_alphas_prev |
|
) |
|
sqrt_one_minus_alphas = ( |
|
self.model.sqrt_one_minus_alphas_cumprod |
|
if use_original_steps |
|
else self.ddim_sqrt_one_minus_alphas |
|
) |
|
sigmas = ( |
|
self.model.ddim_sigmas_for_original_num_steps |
|
if use_original_steps |
|
else self.ddim_sigmas |
|
) |
|
|
|
def get_x_prev_and_pred_x0(e_t, index): |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full( |
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device |
|
) |
|
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t |
|
time_curr = index * 20 + 1 |
|
if noise_save_path and index > 16: |
|
noise = torch.load(noise_save_path + "_time%d.pt" % (time_curr))[:1] |
|
else: |
|
noise = torch.zeros_like(dir_xt) |
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
return x_prev, pred_x0 |
|
|
|
e_t = optimize_model_output(x, t) |
|
if len(old_eps) == 0: |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) |
|
|
|
e_t_next = optimize_model_output(x_prev, t_next) |
|
e_t_prime = (e_t + e_t_next) / 2 |
|
elif len(old_eps) == 1: |
|
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2 |
|
elif len(old_eps) == 2: |
|
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 |
|
elif len(old_eps) >= 3: |
|
|
|
e_t_prime = ( |
|
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3] |
|
) / 24 |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) |
|
|
|
return x_prev, pred_x0, e_t |
|
|
|
|
|
|
|
def sample_optimize_intrinsic_edit( |
|
self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning1=None, |
|
conditioning2=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0.0, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
lambda_t=None, |
|
lambda_save_path=None, |
|
image_save_path=None, |
|
original_text=None, |
|
new_text=None, |
|
otext=None, |
|
noise_saved_path=None, |
|
|
|
**kwargs, |
|
): |
|
assert conditioning1 is not None |
|
assert conditioning2 is not None |
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) |
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
print(f"Data shape for PLMS sampling is {size}") |
|
|
|
self.plms_sampling_optimize_intrinsic_edit( |
|
conditioning1, |
|
conditioning2, |
|
size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, |
|
x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
input_image=input_image, |
|
noise_save_path=noise_save_path, |
|
lambda_t=lambda_t, |
|
lambda_save_path=lambda_save_path, |
|
image_save_path=image_save_path, |
|
original_text=original_text, |
|
new_text=new_text, |
|
otext=otext, |
|
noise_saved_path=noise_saved_path, |
|
) |
|
return None |
|
|
|
def plms_sampling_optimize_intrinsic_edit( |
|
self, |
|
cond1, |
|
cond2, |
|
shape, |
|
x_T=None, |
|
ddim_use_original_steps=False, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
log_every_t=100, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
lambda_t=None, |
|
lambda_save_path=None, |
|
image_save_path=None, |
|
original_text=None, |
|
new_text=None, |
|
otext=None, |
|
noise_saved_path=None, |
|
): |
|
|
|
device = self.model.betas.device |
|
|
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
img_clone = img.clone() |
|
|
|
if timesteps is None: |
|
timesteps = ( |
|
self.ddpm_num_timesteps |
|
if ddim_use_original_steps |
|
else self.ddim_timesteps |
|
) |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = ( |
|
int( |
|
min(timesteps / self.ddim_timesteps.shape[0], 1) |
|
* self.ddim_timesteps.shape[0] |
|
) |
|
- 1 |
|
) |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {"x_inter": [img], "pred_x0": [img]} |
|
time_range = ( |
|
list(reversed(range(0, timesteps))) |
|
if ddim_use_original_steps |
|
else np.flip(timesteps) |
|
) |
|
|
|
weighting_parameter = lambda_t |
|
weighting_parameter.requires_grad = True |
|
from torch import optim |
|
|
|
optimizer = optim.Adam([weighting_parameter], lr=0.05) |
|
|
|
print("Original image") |
|
with torch.no_grad(): |
|
img = img_clone.clone() |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
iterator = time_range |
|
old_eps = [] |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
|
|
outs = self.p_sample_plms_sampling( |
|
img, |
|
cond1, |
|
cond2, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
old_eps=old_eps, |
|
t_next=ts_next, |
|
input_image=input_image, |
|
optimizing_weight=torch.ones(50)[i], |
|
noise_save_path=noise_saved_path, |
|
) |
|
img, pred_x0, e_t = outs |
|
old_eps.append(e_t) |
|
if len(old_eps) >= 4: |
|
old_eps.pop(0) |
|
img_temp = self.model.decode_first_stage(img) |
|
img_temp_ddim = torch.clamp((img_temp + 1.0) / 2.0, min=0.0, max=1.0) |
|
img_temp_ddim = img_temp_ddim.cpu().permute(0, 2, 3, 1).permute(0, 3, 1, 2) |
|
|
|
with torch.no_grad(): |
|
x_sample = 255.0 * rearrange( |
|
img_temp_ddim[0].detach().cpu().numpy(), "c h w -> h w c" |
|
) |
|
imgsave = Image.fromarray(x_sample.astype(np.uint8)) |
|
imgsave.save(image_save_path + "original.png") |
|
readed_image = ( |
|
torchvision.io.read_image(image_save_path + "original.png").float() |
|
/ 255 |
|
) |
|
print("Optimizing start") |
|
for epoch in tqdm(range(10)): |
|
img = img_clone.clone() |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
iterator = time_range |
|
old_eps = [] |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
|
|
outs = self.p_sample_plms_sampling( |
|
img, |
|
cond1, |
|
cond2, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
old_eps=old_eps, |
|
t_next=ts_next, |
|
input_image=input_image, |
|
optimizing_weight=weighting_parameter[i], |
|
noise_save_path=noise_saved_path, |
|
) |
|
img, pred_x0, e_t = outs |
|
old_eps.append(e_t) |
|
if len(old_eps) >= 4: |
|
old_eps.pop(0) |
|
img_temp = self.model.decode_first_stage(img) |
|
img_temp_ddim = torch.clamp((img_temp + 1.0) / 2.0, min=0.0, max=1.0) |
|
img_temp_ddim = img_temp_ddim.cpu() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss1 = VGGPerceptualLoss()(img_temp_ddim[0], readed_image) |
|
loss2 = DCLIPLoss()( |
|
readed_image, img_temp_ddim[0].float().cuda(), otext, new_text |
|
) |
|
loss = 0.05 * loss1 + loss2 |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
|
|
if epoch < 9: |
|
del img |
|
else: |
|
|
|
with torch.no_grad(): |
|
x_sample = 255.0 * rearrange( |
|
img_temp_ddim[0].detach().cpu().numpy(), "c h w -> h w c" |
|
) |
|
imgsave = Image.fromarray(x_sample.astype(np.uint8)) |
|
imgsave.save(image_save_path + "/final.png") |
|
torch.save( |
|
weighting_parameter, lambda_save_path + "/weightingParam_final.pt" |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
def sample_optimize_intrinsic( |
|
self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning1=None, |
|
conditioning2=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0.0, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
lambda_t=None, |
|
lambda_save_path=None, |
|
image_save_path=None, |
|
original_text=None, |
|
new_text=None, |
|
otext=None, |
|
|
|
**kwargs, |
|
): |
|
assert conditioning1 is not None |
|
assert conditioning2 is not None |
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) |
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
print(f"Data shape for PLMS sampling is {size}") |
|
|
|
self.plms_sampling_optimize_intrinsic( |
|
conditioning1, |
|
conditioning2, |
|
size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, |
|
x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
input_image=input_image, |
|
noise_save_path=noise_save_path, |
|
lambda_t=lambda_t, |
|
lambda_save_path=lambda_save_path, |
|
image_save_path=image_save_path, |
|
original_text=original_text, |
|
new_text=new_text, |
|
otext=otext, |
|
) |
|
return None |
|
|
|
def plms_sampling_optimize_intrinsic( |
|
self, |
|
cond1, |
|
cond2, |
|
shape, |
|
x_T=None, |
|
ddim_use_original_steps=False, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
log_every_t=100, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
input_image=None, |
|
noise_save_path=None, |
|
lambda_t=None, |
|
lambda_save_path=None, |
|
image_save_path=None, |
|
original_text=None, |
|
new_text=None, |
|
otext=None, |
|
): |
|
device = self.model.betas.device |
|
|
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
img_clone = img.clone() |
|
|
|
if timesteps is None: |
|
timesteps = ( |
|
self.ddpm_num_timesteps |
|
if ddim_use_original_steps |
|
else self.ddim_timesteps |
|
) |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = ( |
|
int( |
|
min(timesteps / self.ddim_timesteps.shape[0], 1) |
|
* self.ddim_timesteps.shape[0] |
|
) |
|
- 1 |
|
) |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
time_range = ( |
|
list(reversed(range(0, timesteps))) |
|
if ddim_use_original_steps |
|
else np.flip(timesteps) |
|
) |
|
weighting_parameter = lambda_t |
|
weighting_parameter.requires_grad = True |
|
from torch import optim |
|
|
|
optimizer = optim.Adam([weighting_parameter], lr=0.05) |
|
|
|
print("Original image") |
|
with torch.no_grad(): |
|
img = img_clone.clone() |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
iterator = time_range |
|
old_eps = [] |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
|
|
outs = self.p_sample_plms_sampling( |
|
img, |
|
cond1, |
|
cond2, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
old_eps=old_eps, |
|
t_next=ts_next, |
|
input_image=input_image, |
|
optimizing_weight=torch.ones(50)[i], |
|
noise_save_path=noise_save_path, |
|
) |
|
img, pred_x0, e_t = outs |
|
old_eps.append(e_t) |
|
if len(old_eps) >= 4: |
|
old_eps.pop(0) |
|
img_temp = self.model.decode_first_stage(img) |
|
del img |
|
img_temp_ddim = torch.clamp((img_temp + 1.0) / 2.0, min=0.0, max=1.0) |
|
img_temp_ddim = img_temp_ddim.cpu().permute(0, 2, 3, 1).permute(0, 3, 1, 2) |
|
|
|
with torch.no_grad(): |
|
x_sample = 255.0 * rearrange( |
|
img_temp_ddim[0].detach().cpu().numpy(), "c h w -> h w c" |
|
) |
|
imgsave = Image.fromarray(x_sample.astype(np.uint8)) |
|
imgsave.save(image_save_path + "original.png") |
|
|
|
readed_image = ( |
|
torchvision.io.read_image(image_save_path + "original.png").float() |
|
/ 255 |
|
) |
|
|
|
print("Optimizing start") |
|
for epoch in tqdm(range(10)): |
|
img = img_clone.clone() |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
iterator = time_range |
|
old_eps = [] |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
ts_next = torch.full( |
|
(b,), |
|
time_range[min(i + 1, len(time_range) - 1)], |
|
device=device, |
|
dtype=torch.long, |
|
) |
|
|
|
outs = self.p_sample_plms_sampling( |
|
img, |
|
cond1, |
|
cond2, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
old_eps=old_eps, |
|
t_next=ts_next, |
|
input_image=input_image, |
|
optimizing_weight=weighting_parameter[i], |
|
noise_save_path=noise_save_path, |
|
) |
|
img, _, e_t = outs |
|
old_eps.append(e_t) |
|
if len(old_eps) >= 4: |
|
old_eps.pop(0) |
|
img_temp = self.model.decode_first_stage(img) |
|
del img |
|
img_temp_ddim = torch.clamp((img_temp + 1.0) / 2.0, min=0.0, max=1.0) |
|
img_temp_ddim = img_temp_ddim.cpu() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss1 = VGGPerceptualLoss()(img_temp_ddim[0], readed_image) |
|
loss2 = DCLIPLoss()( |
|
readed_image, img_temp_ddim[0].float().cuda(), otext, new_text |
|
) |
|
loss = ( |
|
0.05 * loss1 + loss2 |
|
) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
with torch.no_grad(): |
|
if epoch == 9: |
|
|
|
x_sample = 255.0 * rearrange( |
|
img_temp_ddim[0].detach().cpu().numpy(), "c h w -> h w c" |
|
) |
|
imgsave = Image.fromarray(x_sample.astype(np.uint8)) |
|
imgsave.save(image_save_path + "/final.png") |
|
torch.save( |
|
weighting_parameter, |
|
lambda_save_path + "/weightingParam_final.pt", |
|
) |
|
torch.cuda.empty_cache() |
|
return None |
|
|
|
|
|
|
|
|