Spaces:
Sleeping
Sleeping
File size: 4,637 Bytes
0cc20f3 7e338ce 36f1349 0cc20f3 adf1205 5650727 b91b901 afa0cd6 adf1205 0cc20f3 32c34a8 9ae2604 1c763ac 0cc20f3 afa0cd6 0cc20f3 afa0cd6 70762cf 0cc20f3 70762cf dee336f adf1205 0cc20f3 8f92dc6 0cc20f3 7e338ce adafc31 8f92dc6 0cc20f3 adafc31 0cc20f3 ea58d27 8f92dc6 0cc20f3 8f92dc6 7e338ce adf1205 6b5ce4a adf1205 004be7e 1829484 adf1205 77b5e94 7f2009a 004be7e 8f92dc6 6b5ce4a 004be7e 6b5ce4a adf1205 adafc31 004be7e 77b5e94 adafc31 0cc20f3 8f92dc6 0cc20f3 adafc31 004be7e 0cc20f3 adf1205 004be7e 0cc20f3 ea58d27 adafc31 0cc20f3 adf1205 6b5ce4a adf1205 5650727 adf1205 0cc20f3 5650727 0cc20f3 b91b901 0cc20f3 adf1205 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import tempfile
import gradio as gr
import pandas as pd
from utilities.setup import get_files
#import spaces
from services.diarization import Diarizer
from services.asr import Transcriber
from speechbox import ASRDiarizationPipeline
#@spaces.GPU
def process_meeting(audio_input, num_speakers):
"""
audio_input: filepath --> str
num_speakers: number --> int
speaker_names: dataset --> np.array
"""
print(audio_input)
# Get diarization and transcription pipelines
diarization_pipeline = diarizer.get_pipeline()
asr_pipeline = transcriber.get_pipeline()
# Pass it into speechbox for prediction and cleaning
pipeline = ASRDiarizationPipeline(
asr_pipeline=asr_pipeline,
diarization_pipeline=diarization_pipeline)
output = pipeline(audio_input,
num_speakers = num_speakers)
# Clean User name
text = ""
for i in range(len(output)):
speaker = output[i]['speaker']
words = output[i]['text']
text += f"{speaker}: {words}\n"
return text
def click_message():
return "Results loading. Go to next page!"
def default_table():
return pd.DataFrame({
"Default": ["SPEAKER_00", "SPEAKER_01", "SPEAKER_02", "SPEAKER_03","SPEAKER_04"],
"Name": ["", "", "", "", ""],
"Title": ["", "", "", "", ""]
})
def tempfile_generator():
# Generate a unique temporary file name
temp_file = tempfile.NamedTemporaryFile(suffix='.txt', delete=False)
temp_file_name = temp_file.name
temp_file.close()
return temp_file_name
def substitute_names(speaker_names, num_speakers, text):
# Clean Speaker names
df = speaker_names.itertuples(index=False)
df = df[0:(num_speakers-1)]
for default, name, title in df:
if title != "":
title = " ("+title.strip()+")"
text = text.replace(default, f"{name.strip()}{title}")
# Make file downloadable
temp_file_name = tempfile_generator()
with open(temp_file_name, "w") as file:
file.write(text)
def main(conf):
with gr.Blocks(theme=gr.themes.Soft(text_size="lg")) as demo:
with gr.TabItem(conf["layout"]["page_names"][0]):
gr.Markdown("# π€ Non-Video Meeting Transcription and Speaker Diarization")
gr.Markdown("![](file/microphone_pen_and_paper.png)")
gr.Markdown(get_files.load_markdown_file(conf["layout"]["about"]))
with gr.TabItem(conf["layout"]["page_names"][1]):
gr.Markdown("# π Upload or record your meeting")
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
num_speakers = gr.Dropdown(list(range(conf["session"]["min_speakers"],
conf["session"]["max_speakers"]+1)),
label="Number of Speakers",
value=conf["session"]["min_speakers"])
process_button = gr.Button("Process")
output_box = gr.Textbox(label="Progress")
with gr.TabItem(conf["layout"]["page_names"][2]):
gr.Markdown("# π View and download your meeting transcript")
transcription_output = gr.Textbox(label="Transcription Review")
speaker_names = gr.Dataframe(
label="Match output names to desired names and titles/responsibility. Only enter values for Name and Title",
headers=["Default", "Name", "Title"],
datatype=["str", "str"],
row_count=(5,"fixed"),
col_count=(3, "fixed"),
type="pandas",
value=default_table(),
)
fix_button = gr.Button("Fix and Prepare Download")
label_file_link = gr.File(label="Download Cleaned Transcript")
# Process
process_button.click(fn=click_message,
outputs=output_box)
process_button.click(
fn=process_meeting,
inputs=[audio_input, num_speakers],
outputs=[transcription_output]
)
fix_button.click(
fn=substitute_names,
inputs=[speaker_names, num_speakers, transcription_output],
outputs=[label_file_link]
)
demo.launch(server_name="0.0.0.0", allowed_paths=["/"])
if __name__ == "__main__":
# get config
conf = get_files.json_cfg()
# initialize diarizer
diarizer = Diarizer(conf)
transcriber = Transcriber(conf)
# run main
main(conf) |