import torch from transformers import pipeline class Transcriber: def __init__(self, conf): self.conf = conf self.pipeline = self.asr_pipeline() def asr_pipeline(self): return pipeline( self.conf["model"]["asr"]["type"], model=self.conf["model"]["asr"]["transcriber"], language="en", device=0 if torch.cuda.is_available() else -1 # Use 0 for GPU, -1 for CPU ) def run(self, file_path): kwargs = {"max_new_tokens": self.conf["model"]["asr"]["max_new_tokens"]} output = self.pipeline( file_path, generate_kwargs=kwargs, return_timestamps=True, ) print(output) return output.get("chunks", output) # Use .get to avoid key errors