File size: 1,051 Bytes
471d3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f01a3b
471d3b8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#import torch
#from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
#from peft import PeftConfig, PeftModel


from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer



class InferencePipeline:
    def __init__(self, conf, api_key):
        self.conf = conf
        self.token = api_key
        self.model, self.tokenizer = self.get_model()

    def get_model(self):

        model = AutoPeftModelForCausalLM.from_pretrained(
            self.conf["model"]["model_name"],
            load_in_4bit = not self.conf["model"]["load_in_4bit"],
        )
        tokenizer = AutoTokenizer.from_pretrained(self.path)
        
        return model, tokenizer

    def infer(self, prompt):
        inputs = self.tokenizer([prompt], return_tensors = "pt").to("cuda")
        outputs = model.generate(**inputs, 
                         max_new_tokens = self.conf["model"]["max_new_tokens"], 
                         use_cache = True)
        outputs = tokenizer.batch_decode(outputs)
        return outputs