tykiww's picture
Update app.py
30da7cc verified
raw
history blame
2.46 kB
##################################### Imports ######################################
# Generic imports
import gradio as gr
# Module imports
from utilities.setup import get_json_cfg
########################### Global objects and functions ###########################
conf = get_json_cfg()
def dropdown_visibility(radio):
value = radio
if value == "Predefined Dataset":
return gr.Dropdown(visible=bool(1))
else:
return gr.Dropdown(visible=bool(0))
def upload_visibility(radio):
value = radio
if value == "Upload Your Own":
return gr.UploadButton(visible=bool(1)) #make it visible
else:
return gr.UploadButton(visible=bool(0))
def greet(model_name, prompt_template, name, dataset):
"""The model call"""
return f"Hello {name}!! Using model: {model_name} with template: {prompt_template}"
##################################### App UI #######################################
with gr.Blocks() as demo:
##### Title Block #####
gr.Markdown("# Instruction Tuning with Unsloth")
##### Model Inputs #####
# Select Model
model_name = gr.Dropdown(label="Model", choices=conf['model']['choices'], value="gpt2")
# Prompt template
prompt_template = gr.Textbox(label="Prompt Template", value="Instruction: {0}\nOutput: {1}")
# Prompt Input
name_input = gr.Textbox(label="Your Name")
# Dataset choice
dataset_choice = gr.Radio(label="Choose Dataset", choices=["Predefined Dataset", "Upload Your Own"], value="Predefined Dataset")
dataset_predefined = gr.Dropdown(label="Predefined Dataset", choices=['1', '2', '3'], value='1', visible=True)
dataset_upload = gr.UploadButton(label="Upload Dataset", file_types=[".pdf",".csv",".jsonl"], visible=False) # gr.File(label="Upload Dataset", visible=False)
dataset_choice.change(dropdown_visibility, dataset_choice, dataset_predefined)
dataset_choice.change(upload_visibility, dataset_choice, dataset_upload)
##### Model Outputs #####
# Text output
output = gr.Textbox(label="Output")
##### Execution #####
# Setup button
tune_btn = gr.Button("Start Fine Tuning")
# Execute button
tune_btn.click(fn=greet,
inputs=[model_name, prompt_template, name_input, dataset_predefined],
outputs=output)
##################################### Launch #######################################
if __name__ == "__main__":
demo.launch()