Spaces:
Sleeping
Sleeping
import json | |
from services.qa_service.utils import format_prompt | |
class QAService: | |
def __init__(self, conf, pinecone, model_pipeline, question, goals): | |
self.conf = conf | |
self.pc = pinecone['connection'] | |
self.pc_index = self.pc.Index(self.conf['embeddings']['index_name']) | |
self.embedder = pinecone['embedder'] | |
self.model_pipeline = model_pipeline | |
self.question = question | |
self.goals = goals | |
def __enter__(self): | |
print("Start Q&A Service") | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
print("Exiting Q&A Service") | |
def parse_results(self, result): | |
parsed = [] | |
for i in result: | |
level_1 = i['matches'] | |
level_2 = level_1['metadata']['_node_content'] | |
collect = json.loads(level_2)["text"] | |
parsed.append(collect) | |
return collect | |
def retrieve_context(self): | |
"""Pass embedded question into pinecone""" | |
embedded_query = self.embedder.get_text_embedding(self.question) | |
result = self.pc_index.query( | |
vector=embedded_query, | |
top_k=5, | |
include_values=False, | |
include_metadata=True | |
) | |
output = self.parse_results(result) | |
return output | |
def run(self): | |
"""Query pinecone outputs and infer results""" | |
context = '\n'.join(self.retrieve_context()) | |
prompt = format_prompt(self.question, context) | |
output = self.model_pipeline.infer(prompt) | |
return output, context | |