Spaces:
Sleeping
Sleeping
##################################### Imports ###################################### | |
# Generic imports | |
import gradio as gr | |
import json | |
# Specialized imports | |
#from utilities.modeling import modeling | |
# server import | |
from server import get_files, submit_weights #, train_model, submit_weights | |
# Module imports | |
from utilities.setup import get_json_cfg | |
from utilities.templates import prompt_template | |
########################### Global objects and functions ########################### | |
conf = get_json_cfg() | |
class update_visibility: | |
def textbox_vis(radio): | |
value = radio | |
if value == "Hugging Face Hub Dataset": | |
return gr.Dropdown(visible=bool(1)) | |
else: | |
return gr.Dropdown(visible=bool(0)) | |
def textbox_button_vis(radio): | |
value = radio | |
if value == "Hugging Face Hub Dataset": | |
return gr.Button(visible=bool(1)) | |
else: | |
return gr.Button(visible=bool(0)) | |
def upload_vis(radio): | |
value = radio | |
if value == "Upload Your Own": | |
return gr.UploadButton(visible=bool(1)) #make it visible | |
else: | |
return gr.UploadButton(visible=bool(0)) | |
def train(model_name, | |
inject_prompt, | |
dataset_predefined, | |
peft, | |
sft, | |
max_seq_length, | |
random_seed, | |
num_epochs, | |
max_steps, | |
data_field, | |
repository, | |
model_out_name): | |
"""The model call""" | |
# Get models | |
# trainer = modeling(model_name, max_seq_length, random_seed, | |
# peft, sft, dataset, data_field) | |
# trainer_stats = trainer.train() | |
# Return outputs of training. | |
return f"Hello!! Using model: {model_name} with template: {inject_prompt}" | |
##################################### App UI ####################################### | |
def main(): | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("About"): | |
# About page!! | |
gr.Markdown(get_files.load_markdown_file("README.md")) | |
with gr.TabItem("Basic Setup"): | |
gr.Markdown("# Select Model and Input details") | |
# Select Model | |
modelnames = conf['model']['choices'] | |
model_name = gr.Dropdown(label="Supported Models", | |
choices=modelnames, | |
value=modelnames[0]) | |
# Select Generic Model parameters | |
repository = gr.Textbox(label="Your User Name", | |
value=conf['model']['general']["repository"]) | |
model_out_name = gr.Textbox(label="Your Model Output Name", | |
value=conf['model']['general']["model_name"]) | |
hf_token = gr.Textbox(label="Your Huggingface Token", | |
type='password', | |
value='') | |
with gr.TabItem("Upload Data"): | |
# Toggle dataset load types | |
gr.Markdown("# Dataset Selection and Upload") | |
dataset_choice = gr.Radio(label="Choose Dataset", | |
choices=["Hugging Face Hub Dataset", "Upload Your Own"], | |
value="Hugging Face Hub Dataset") | |
dataset_predefined = gr.Textbox(label="Hugging Face Hub Training Dataset", | |
value='yahma/alpaca-cleaned', | |
visible=True) | |
dataset_predefined_load = gr.Button("Upload Dataset (.csv, .jsonl, or .txt)") | |
dataset_uploaded_load = gr.UploadButton(label="Upload Dataset (.csv, .jsonl, or .txt)", | |
file_types=[".csv",".jsonl", ".txt"], | |
visible=False) | |
# Safety output to show if upload succeeded. | |
data_snippet = gr.Markdown() | |
# Visibility toggler | |
dataset_choice.change(update_visibility.textbox_vis, | |
dataset_choice, | |
dataset_predefined) | |
dataset_choice.change(update_visibility.upload_vis, | |
dataset_choice, | |
dataset_uploaded_load) | |
dataset_choice.change(update_visibility.textbox_button_vis, | |
dataset_choice, | |
dataset_predefined_load) | |
# Prompt template | |
inject_prompt = gr.Textbox(label="Prompt Template", | |
value=prompt_template()) | |
# Dataset buttons | |
dataset_predefined_load.click(fn=get_files.predefined_dataset, | |
inputs=dataset_predefined, | |
outputs=data_snippet) | |
dataset_uploaded_load.click(fn=get_files.uploaded_dataset, | |
inputs=dataset_uploaded_load, | |
outputs=data_snippet) | |
with gr.TabItem("Train Model"): | |
##### Model Parameter Inputs ##### | |
gr.Markdown("# Model Parameter Selection") | |
# Parameters | |
data_field = gr.Textbox(label="Dataset Training Field Name", | |
value=conf['model']['general']["dataset_text_field"]) | |
max_seq_length = gr.Textbox(label="Maximum sequence length", | |
value=conf['model']['general']["max_seq_length"]) | |
random_seed = gr.Textbox(label="Seed", | |
value=conf['model']['general']["seed"]) | |
num_epochs = gr.Textbox(label="Training Epochs", | |
value=conf['model']['general']["num_train_epochs"]) | |
max_steps = gr.Textbox(label="Maximum steps", | |
value=conf['model']['general']["max_steps"]) | |
# Hyperparameters (allow selection, but hide in accordion.) | |
with gr.Accordion("Advanced Tuning", open=False): | |
sftparams = conf['model']['general'] | |
# accordion container content | |
dict_string = json.dumps(dict(conf['model']['peft']), indent=4) | |
peft = gr.Textbox(label="PEFT Parameters (json)", value=dict_string) | |
dict_string = json.dumps(dict(conf['model']['sft']), indent=4) | |
sft = gr.Textbox(label="SFT Parameters (json)", value=dict_string) | |
##### Execution ##### | |
# Setup buttons | |
tune_btn = gr.Button("Start Fine Tuning") | |
gr.Markdown("### Model Progress") | |
# Text output (for now) | |
output = gr.Textbox(label="Output") | |
# Data retrieval | |
# Execute buttons | |
tune_btn.click(fn=train, | |
inputs=[model_name, | |
inject_prompt, | |
dataset_predefined, | |
peft, | |
sft, | |
max_seq_length, | |
random_seed, | |
num_epochs, | |
max_steps, | |
data_field, | |
repository, | |
model_out_name | |
], | |
outputs=output) | |
# stop button | |
# submit button | |
# Launch baby | |
demo.launch() | |
##################################### Launch ####################################### | |
if __name__ == "__main__": | |
main() |