##################################### Imports ###################################### # Generic imports import gradio as gr # Module imports from utilities.setup import get_json_cfg from utilities.templates import prompt_template ########################### Global objects and functions ########################### conf = get_json_cfg() def textbox_visibility(radio): value = radio if value == "Hugging Face Hub Dataset": return gr.Dropdown(visible=bool(1)) else: return gr.Dropdown(visible=bool(0)) def upload_visibility(radio): value = radio if value == "Upload Your Own": return gr.UploadButton(visible=bool(1)) #make it visible else: return gr.UploadButton(visible=bool(0)) def greet(model_name, inject_prompt, dataset, pefts): """The model call""" return f"Hello!! Using model: {model_name} with template: {inject_prompt}" ##################################### App UI ####################################### def main(): with gr.Blocks() as demo: ##### Title Block ##### gr.Markdown("# Instruction Tuning with Unsloth") ##### Model Inputs ##### # Select Model modelnames = conf['model']['choices'] model_name = gr.Dropdown(label="Supported Models", choices=modelnames, value=modelnames[0]) # Prompt template inject_prompt = gr.Textbox(label="Prompt Template", value=prompt_template()) # Dataset choice dataset_choice = gr.Radio(label="Choose Dataset", choices=["Hugging Face Hub Dataset", "Upload Your Own"], value="Hugging Face Hub Dataset") dataset_predefined = gr.Textbox(label="Hugging Face Hub Dataset", value='yahma/alpaca-cleaned', visible=True) dataset_upload = gr.UploadButton(label="Upload Dataset (csv, jsonl, or txt)", file_types=[".csv",".jsonl", ".txt"], visible=False) dataset_choice.change(textbox_visibility, dataset_choice, dataset_predefined) dataset_choice.change(upload_visibility, dataset_choice, dataset_upload) # Hyperparameters (allow selection, but hide in accordion.) with gr.Accordion("Advanced Tuning", open=False): # config peftparams = conf['model']['peft'] sftparams = conf['model']['sft'] # accordion container content gr.Markdown("### PEFT Parameters") r = gr.Textbox(label="r", value=peftparams['r']) alpha = gr.Textbox(label="LoRA alpha", value=peftparams['alpha']) dropout = gr.Textbox(label="LoRA dropout", value=peftparams['dropout']) bias = gr.Textbox(label="Bias", value=peftparams['bias']) seed = gr.Textbox(label="Random State", value=peftparams['seed']) rslora = gr.Textbox(label="Use R-S LoRA", value=peftparams['rslora']) pefts = [r, alpha, dropout, bias, seed, rslora] gr.Markdown("List of items") gr.Markdown("### Supervised Fine-Tuning Parameters") gr.Markdown("List of items") ##### Execution ##### # Setup button tune_btn = gr.Button("Start Fine Tuning") # Text output (for now) output = gr.Textbox(label="Output") # Execute button tune_btn.click(fn=greet, inputs=[model_name, inject_prompt, dataset_predefined, pefts], outputs=output) # Launch baby demo.launch() ##################################### Launch ####################################### if __name__ == "__main__": main()