##################################### Imports ###################################### # Generic imports import gradio as gr # Module imports from utilities.setup import get_json_cfg ########################### Global objects and functions ########################### conf = get_json_cfg() def dropdown_visibility(radio): value = radio if value == "Predefined Dataset": return gr.Dropdown(visible=bool(1)) else: return gr.Dropdown(visible=bool(0)) def upload_visibility(radio): value = radio if value == "Upload Your Own": return gr.UploadButton(visible=bool(1)) #make it visible else: return gr.UploadButton(visible=bool(0)) def greet(model_name, prompt_template, name, dataset): """The model call""" return f"Hello {name}!! Using model: {model_name} with template: {prompt_template}" ##################################### App UI ####################################### with gr.Blocks() as demo: ##### Title Block ##### gr.Markdown("# Instruction Tuning with Unsloth") ##### Model Inputs ##### # Select Model model_name = gr.Dropdown(label="Model", choices=conf['model']['choices'], value="gpt2") # Prompt template prompt_template = gr.Textbox(label="Prompt Template", value="Instruction: {0}\nOutput: {1}") # Prompt Input name_input = gr.Textbox(label="Your Name") # Dataset choice dataset_choice = gr.Radio(label="Choose Dataset", choices=["Predefined Dataset", "Upload Your Own"], value="Predefined Dataset") dataset_predefined = gr.Dropdown(label="Predefined Dataset", choices=['1', '2', '3'], value='1', visible=True) dataset_upload = gr.UploadButton(label="Upload Dataset", file_types=[".pdf",".csv",".jsonl"], visible=False) # gr.File(label="Upload Dataset", visible=False) dataset_choice.change(dropdown_visibility, dataset_choice, dataset_predefined) dataset_choice.change(upload_visibility, dataset_choice, dataset_upload) ##### Model Outputs ##### # Text output output = gr.Textbox(label="Output") ##### Execution ##### # Setup button tune_btn = gr.Button("Start Fine Tuning") # Execute button tune_btn.click(fn=greet, inputs=[model_name, prompt_template, name_input, dataset_predefined], outputs=output) ##################################### Launch ####################################### if __name__ == "__main__": demo.launch()