import json from services.qa_service.utils import format_prompt class QAService: def __init__(self, conf, pinecone, model_pipeline, question, goals): self.conf = conf self.pc = pinecone['connection'] self.pc_index = self.pc.Index(self.conf['embeddings']['index_name']) self.embedder = pinecone['embedder'] self.model_pipeline = model_pipeline self.question = question self.goals = goals def __enter__(self): print("Start Q&A Service") return self def __exit__(self, exc_type, exc_val, exc_tb): print("Exiting Q&A Service") def parse_results(self, result): parsed = [] for i in result['matches']: collect = i['metadata']['_node_content'] content = json.loads(collect) parsed.append({ "speakers": content["metadata"]["speakers"], "text": content["text"] }) return parsed def retrieve_context(self): """Pass embedded question into pinecone""" embedded_query = self.embedder.get_text_embedding(self.question) result = self.pc_index.query( vector=embedded_query, top_k=5, include_values=False, include_metadata=True ) output = self.parse_results(result) return output def run(self): """Query pinecone outputs and infer results""" full_context = self.retrieve_context() context = '\n'.join([i["text"] for i in full_context]) prompt = format_prompt(self.question, context) output = self.model_pipeline.infer(prompt) return output, context