File size: 23,759 Bytes
c5ed230
 
 
 
 
 
 
 
5854014
c5ed230
 
 
5854014
c5ed230
5854014
c5ed230
 
d94ccbe
c5ed230
 
 
 
 
 
 
 
 
36fb9b8
 
 
 
 
 
 
 
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36fb9b8
 
 
 
 
 
 
c5ed230
 
 
 
 
 
 
 
5854014
c5ed230
 
 
 
36fb9b8
 
 
 
 
 
 
 
 
 
c5ed230
 
 
36fb9b8
 
c5ed230
 
5854014
c5ed230
 
5854014
 
c5ed230
36fb9b8
c5ed230
36fb9b8
 
 
 
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5854014
 
c5ed230
5854014
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36fb9b8
5854014
c5ed230
 
b5830b6
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5830b6
 
 
c5ed230
 
5854014
 
b5830b6
c5ed230
 
 
 
b5830b6
 
 
c5ed230
b5830b6
c5ed230
b5830b6
 
 
 
 
 
 
 
 
 
 
 
c5ed230
b5830b6
c5ed230
 
b5830b6
 
 
 
 
 
 
 
 
 
 
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94ccbe
c5ed230
 
 
 
 
 
 
d94ccbe
c5ed230
5854014
 
d94ccbe
5854014
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5854014
 
c5ed230
5854014
c5ed230
 
5854014
 
c5ed230
5854014
c5ed230
5854014
 
 
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5830b6
 
 
 
 
 
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94ccbe
c5ed230
 
 
 
 
 
 
 
 
 
5854014
 
c5ed230
 
b5830b6
d94ccbe
b5830b6
 
d94ccbe
c5ed230
b5830b6
c5ed230
 
 
b5830b6
c5ed230
b5830b6
d94ccbe
b5830b6
 
 
c5ed230
b5830b6
 
 
 
 
 
 
 
 
 
 
d94ccbe
 
 
b5830b6
 
 
 
c5ed230
 
 
b5830b6
c5ed230
b5830b6
d94ccbe
b5830b6
 
 
c5ed230
b5830b6
c5ed230
 
 
b5830b6
c5ed230
b5830b6
d94ccbe
b5830b6
 
 
c5ed230
b5830b6
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
b5830b6
c5ed230
b5830b6
 
d94ccbe
b5830b6
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import os
import librosa
import commons
import re
import numpy as np
import torch
import xml.etree.ElementTree as ET
import config
import soundfile as sf
from torch import no_grad, LongTensor, inference_mode, FloatTensor
from io import BytesIO
from graiax import silkcoder
from utils.nlp import sentence_split
from mel_processing import spectrogram_torch
from text import text_to_sequence
from models import SynthesizerTrn
from utils import utils
from logger import logger

# torch.set_num_threads(1) # 设置torch线程为1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class vits:
    def __init__(self, model, config, model_=None, model_type=None):
        self.model_type = model_type
        self.hps_ms = utils.get_hparams_from_file(config)
        self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
        self.n_symbols = len(getattr(self.hps_ms, 'symbols', []))
        self.speakers = getattr(self.hps_ms, 'speakers', ['0'])
        self.use_f0 = getattr(self.hps_ms.data, 'use_f0', False)
        self.emotion_embedding = getattr(self.hps_ms.data, 'emotion_embedding',
                                         getattr(self.hps_ms.model, 'emotion_embedding', False))
        self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding',
                                      getattr(self.hps_ms.model, 'bert_embedding', False))
        self.hps_ms.model.emotion_embedding = self.emotion_embedding
        self.hps_ms.model.bert_embedding = self.bert_embedding

        self.net_g_ms = SynthesizerTrn(
            self.n_symbols,
            self.hps_ms.data.filter_length // 2 + 1,
            self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
            n_speakers=self.n_speakers,
            **self.hps_ms.model)
        _ = self.net_g_ms.eval()

        # load model
        self.load_model(model, model_)

    def load_model(self, model, model_=None):
        utils.load_checkpoint(model, self.net_g_ms)
        self.net_g_ms.to(device)
        if self.model_type == "hubert":
            self.hubert = model_
        elif self.model_type == "w2v2":
            self.emotion_reference = model_

    def get_cleaned_text(self, text, hps, cleaned=False):
        if cleaned:
            text_norm = text_to_sequence(text, hps.symbols, [])
        else:
            if self.bert_embedding:
                text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners,
                                                         bert_embedding=self.bert_embedding)
                text_norm = LongTensor(text_norm)
                return text_norm, char_embed
            else:
                text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
        if hps.data.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = LongTensor(text_norm)
        return text_norm

    def get_cleaner(self):
        return getattr(self.hps_ms.data, 'text_cleaners', [None])[0]

    def get_speakers(self, escape=False):
        return self.speakers

    def infer(self, params):
        with no_grad():
            x_tst = params.get("stn_tst").unsqueeze(0).to(device)
            x_tst_lengths = LongTensor([params.get("stn_tst").size(0)]).to(device)
            x_tst_prosody = torch.FloatTensor(params.get("char_embeds")).unsqueeze(0).to(
                device) if self.bert_embedding else None
            sid = params.get("sid").to(device) if not self.bert_embedding else None
            emotion = params.get("emotion").to(device) if self.emotion_embedding else None

            audio = self.net_g_ms.infer(x=x_tst,
                                        x_lengths=x_tst_lengths,
                                        sid=sid,
                                        noise_scale=params.get("noise_scale"),
                                        noise_scale_w=params.get("noise_scale_w"),
                                        length_scale=params.get("length_scale"),
                                        emotion_embedding=emotion,
                                        bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy()

        torch.cuda.empty_cache()

        return audio

    def get_infer_param(self, length_scale, noise_scale, noise_scale_w, text=None, speaker_id=None, audio_path=None,
                        emotion=None, cleaned=False, f0_scale=1):
        emo = None
        char_embeds = None
        if self.model_type != "hubert":
            if self.bert_embedding:
                stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
                sid = None
            else:
                stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
                sid = LongTensor([speaker_id])

        if self.model_type == "w2v2":
            # if emotion_reference.endswith('.npy'):
            #     emotion = np.load(emotion_reference)
            #     emotion = FloatTensor(emotion).unsqueeze(0)
            # else:
            #     audio16000, sampling_rate = librosa.load(
            #         emotion_reference, sr=16000, mono=True)
            #     emotion = self.w2v2(audio16000, sampling_rate)[
            #         'hidden_states']
            #     emotion_reference = re.sub(
            #         r'\..*$', '', emotion_reference)
            #     np.save(emotion_reference, emotion.squeeze(0))
            #     emotion = FloatTensor(emotion)
            emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0)


        elif self.model_type == "hubert":
            if self.use_f0:
                audio, sampling_rate = librosa.load(audio_path, sr=self.hps_ms.data.sampling_rate, mono=True)
                audio16000 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
            else:
                audio16000, sampling_rate = librosa.load(audio_path, sr=16000, mono=True)

            with inference_mode():
                units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy()
                if self.use_f0:
                    f0 = librosa.pyin(audio,
                                      sr=sampling_rate,
                                      fmin=librosa.note_to_hz('C0'),
                                      fmax=librosa.note_to_hz('C7'),
                                      frame_length=1780)[0]
                    target_length = len(units[:, 0])
                    f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length,
                                                 np.arange(0, len(f0)), f0)) * f0_scale
                    units[:, 0] = f0 / 10

            stn_tst = FloatTensor(units)
            sid = LongTensor([speaker_id])
        params = {"length_scale": length_scale, "noise_scale": noise_scale,
                  "noise_scale_w": noise_scale_w, "stn_tst": stn_tst,
                  "sid": sid, "emotion": emo, "char_embeds": char_embeds}

        return params

    def get_tasks(self, voice):
        text = voice.get("text", None)
        speaker_id = voice.get("id", 0)
        length = voice.get("length", 1)
        noise = voice.get("noise", 0.667)
        noisew = voice.get("noisew", 0.8)
        max = voice.get("max", 50)
        lang = voice.get("lang", "auto")
        speaker_lang = voice.get("speaker_lang", None)
        audio_path = voice.get("audio_path", None)
        emotion = voice.get("emotion", 0)

        # 去除所有多余的空白字符
        if text is not None: text = re.sub(r'\s+', ' ', text).strip()

        tasks = []
        if self.model_type == "vits":
            sentence_list = sentence_split(text, max, lang, speaker_lang)
            for sentence in sentence_list:
                params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
                                              noise_scale=noise, noise_scale_w=noisew)
                tasks.append(params)

        elif self.model_type == "hubert":
            params = self.get_infer_param(speaker_id=speaker_id, length_scale=length, noise_scale=noise,
                                          noise_scale_w=noisew, audio_path=audio_path)
            tasks.append(params)

        elif self.model_type == "w2v2":
            sentence_list = sentence_split(text, max, lang, speaker_lang)
            for sentence in sentence_list:
                params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
                                              noise_scale=noise, noise_scale_w=noisew, emotion=emotion)
                tasks.append(params)

        return tasks

    def get_audio(self, voice, auto_break=False):
        tasks = self.get_tasks(voice)
        # 停顿0.75s,避免语音分段合成再拼接后的连接突兀
        brk = np.zeros(int(0.75 * 22050), dtype=np.int16)

        audios = []
        for task in tasks:
            if auto_break:
                chunk = np.concatenate((self.infer(task), brk), axis=0)
            else:
                chunk = self.infer(task)
            audios.append(chunk)

        audio = np.concatenate(audios, axis=0)
        return audio

    def get_stream_audio(self, voice, auto_break=False):
        tasks = self.get_tasks(voice)

        brk = np.zeros(int(0.75 * 22050), dtype=np.int16)

        for task in tasks:
            if auto_break:
                chunk = np.concatenate((self.infer(task), brk), axis=0)
            else:
                chunk = self.infer(task)

            yield chunk

    def voice_conversion(self, voice):
        audio_path = voice.get("audio_path")
        original_id = voice.get("original_id")
        target_id = voice.get("target_id")

        audio = utils.load_audio_to_torch(
            audio_path, self.hps_ms.data.sampling_rate)

        y = audio.unsqueeze(0)

        spec = spectrogram_torch(y, self.hps_ms.data.filter_length,
                                 self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length,
                                 self.hps_ms.data.win_length,
                                 center=False)
        spec_lengths = LongTensor([spec.size(-1)])
        sid_src = LongTensor([original_id])

        with no_grad():
            sid_tgt = LongTensor([target_id])
            audio = self.net_g_ms.voice_conversion(spec.to(device),
                                                   spec_lengths.to(device),
                                                   sid_src=sid_src.to(device),
                                                   sid_tgt=sid_tgt.to(device))[0][0, 0].data.cpu().float().numpy()

        torch.cuda.empty_cache()

        return audio


class TTS:
    def __init__(self, voice_obj, voice_speakers, w2v2_emotion_count=0):
        self._voice_obj = voice_obj
        self._voice_speakers = voice_speakers
        self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
        self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers])
        self._vits_speakers_count = len(self._voice_speakers["VITS"])
        self._hubert_speakers_count = len(self._voice_speakers["HUBERT-VITS"])
        self._w2v2_speakers_count = len(self._voice_speakers["W2V2-VITS"])
        self._w2v2_emotion_count = w2v2_emotion_count
        self.dem = None

        # Initialization information
        self.logger = logger
        self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}")
        self.logger.info(f'device:{device} device.type:{device.type}')

        if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None:
            try:
                import audonnx
                root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL)
                model_file = config.DIMENSIONAL_EMOTION_MODEL
                self.dem = audonnx.load(root=root, model_file=model_file)
            except Exception as e:
                self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")

        if self._vits_speakers_count != 0: self.logger.info(f"[VITS] {self._vits_speakers_count} speakers")
        if self._hubert_speakers_count != 0: self.logger.info(f"[hubert] {self._hubert_speakers_count} speakers")
        if self._w2v2_speakers_count != 0: self.logger.info(f"[w2v2] {self._w2v2_speakers_count} speakers")
        self.logger.info(f"{self._speakers_count} speakers in total")
        if self._speakers_count == 0:
            self.logger.warning(f"No model was loaded")

    @property
    def voice_speakers(self):
        return self._voice_speakers

    @property
    def speakers_count(self):
        return self._speakers_count

    @property
    def vits_speakers_count(self):
        return self._vits_speakers_count

    @property
    def hubert_speakers_count(self):
        return self._hubert_speakers_count

    @property
    def w2v2_speakers_count(self):
        return self._w2v2_speakers_count

    def encode(self, sampling_rate, audio, format):
        with BytesIO() as f:
            if format.upper() == 'OGG':
                sf.write(f, audio, sampling_rate, format="ogg")
                return BytesIO(f.getvalue())
            elif format.upper() == 'SILK':
                sf.write(f, audio, sampling_rate, format="wav")
                return BytesIO(silkcoder.encode(f))
            elif format.upper() == 'MP3':
                sf.write(f, audio, sampling_rate, format="mp3")
                return BytesIO(f.getvalue())
            elif format.upper() == 'WAV':
                sf.write(f, audio, sampling_rate, format="wav")
                return BytesIO(f.getvalue())
            elif format.upper() == 'FLAC':
                sf.write(f, audio, sampling_rate, format="flac")
                return BytesIO(f.getvalue())
            else:
                raise ValueError(f"Unsupported format:{format}")

    def convert_time_string(self, time_string):
        time_value = float(re.findall(r'\d+\.?\d*', time_string)[0])
        time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower()

        if time_unit.upper() == 'MS':
            return time_value / 1000
        elif time_unit.upper() == 'S':
            return time_value
        elif time_unit.upper() == 'MIN':
            return time_value * 60
        elif time_unit.upper() == 'H':
            return time_value * 3600
        elif time_unit.upper() == 'D':
            return time_value * 24 * 3600  # 不会有人真写D吧?
        else:
            raise ValueError("Unsupported time unit: {}".format(time_unit))

    def generate_audio_chunks(self, audio):
        chunk_size = 4096
        while True:
            chunk = audio.read(chunk_size)
            if not chunk:
                break
            yield chunk

    def parse_ssml(self, ssml):
        root = ET.fromstring(ssml)
        format = root.attrib.get("format", "wav")
        voice_tasks = []
        brk_count = 0
        strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}

        for element in root.iter():
            if element.tag == "voice":
                id = int(element.attrib.get("id", root.attrib.get("id", config.ID)))
                lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG))
                length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH)))
                noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE)))
                noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW)))
                max = int(element.attrib.get("max", root.attrib.get("max", "0")))
                # 不填写默认就是vits
                model = element.attrib.get("model", root.attrib.get("model", "vits"))
                # w2v2-vits/emotion-vits才有emotion
                emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0)))

                voice_element = ET.tostring(element, encoding='unicode')

                pattern_voice = r'<voice.*?>(.*?)</voice>'
                pattern_break = r'<break\s*?(.*?)\s*?/>'

                matches_voice = re.findall(pattern_voice, voice_element)[0]
                matches_break = re.split(pattern_break, matches_voice)
                for match in matches_break:
                    strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match)
                    time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match)
                    # break标签 strength属性
                    if strength:
                        brk = strength_dict[strength.group(1)]
                        voice_tasks.append({"break": brk})
                        brk_count += 1
                    # break标签 time属性
                    elif time:
                        brk = self.convert_time_string(time.group(1))
                        voice_tasks.append({"break": brk})
                        brk_count += 1
                    # break标签 为空说明只写了break,默认停顿0.75s
                    elif match == "":
                        voice_tasks.append({"break": 0.75})
                        brk_count += 1
                    # voice标签中除了break剩下的就是文本
                    else:
                        voice_tasks.append({"id": id,
                                            "text": match,
                                            "lang": lang,
                                            "length": length,
                                            "noise": noise,
                                            "noisew": noisew,
                                            "max": max,
                                            "model": model,
                                            "emotion": emotion
                                            })

                # 分段末尾停顿0.75s
                voice_tasks.append({"break": 0.75})
            elif element.tag == "break":
                # brk_count大于0说明voice标签中有break
                if brk_count > 0:
                    brk_count -= 1
                    continue
                brk = strength_dict.get(element.attrib.get("strength"),
                                        self.convert_time_string(element.attrib.get("time", "750ms")))
                voice_tasks.append({"break": brk})

        for i in voice_tasks:
            self.logger.debug(i)

        return voice_tasks, format

    def create_ssml_infer_task(self, voice_tasks, format, fname):
        audios = []
        for voice in voice_tasks:
            if voice.get("break"):
                audios.append(np.zeros(int(voice.get("break") * 22050), dtype=np.int16))
            else:
                model = voice.get("model").upper()
                if model != "VITS" and model != "W2V2-VITS" and model != "EMOTION-VITS":
                    raise ValueError(f"Unsupported model: {voice.get('model')}")
                voice_obj = self._voice_obj[model][voice.get("id")][1]
                voice["id"] = self._voice_obj[model][voice.get("id")][0]
                audio = voice_obj.get_audio(voice)
                audios.append(audio)

        audio = np.concatenate(audios, axis=0)
        encoded_audio = self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
        if getattr(config, "SAVE_AUDIO", False):
            path = f"{config.CACHE_PATH}/{fname}"
            utils.save_audio(encoded_audio.getvalue(), path)
        return encoded_audio

    def vits_infer(self, voice, fname):
        format = voice.get("format", "wav")
        voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
        voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
        sampling_rate = voice_obj.hps_ms.data.sampling_rate
        audio = voice_obj.get_audio(voice, auto_break=True)
        encoded_audio = self.encode(sampling_rate, audio, format)
        if getattr(config, "SAVE_AUDIO", False):
            path = f"{config.CACHE_PATH}/{fname}"
            utils.save_audio(encoded_audio.getvalue(), path)
        return encoded_audio

    def stream_vits_infer(self, voice, fname):
        format = voice.get("format", "wav")
        voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
        voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
        sampling_rate = voice_obj.hps_ms.data.sampling_rate
        genertator = voice_obj.get_stream_audio(voice, auto_break=True)
        audio = BytesIO()
        for chunk in genertator:
            encoded_audio = self.encode(sampling_rate, chunk, format)
            for encoded_audio_chunk in self.generate_audio_chunks(encoded_audio):
                yield encoded_audio_chunk
            if getattr(config, "SAVE_AUDIO", False):
                audio.write(encoded_audio.getvalue())
        if getattr(config, "SAVE_AUDIO", False):
            path = f"{config.CACHE_PATH}/{fname}"
            utils.save_audio(audio.getvalue(), path)

    def hubert_vits_infer(self, voice, fname):
        format = voice.get("format", "wav")
        voice_obj = self._voice_obj["HUBERT-VITS"][voice.get("id")][1]
        voice["id"] = self._voice_obj["HUBERT-VITS"][voice.get("id")][0]
        sampling_rate = voice_obj.hps_ms.data.sampling_rate
        audio = voice_obj.get_audio(voice)
        encoded_audio = self.encode(sampling_rate, audio, format)
        if getattr(config, "SAVE_AUDIO", False):
            path = f"{config.CACHE_PATH}/{fname}"
            utils.save_audio(encoded_audio.getvalue(), path)
        return encoded_audio

    def w2v2_vits_infer(self, voice, fname):
        format = voice.get("format", "wav")
        voice_obj = self._voice_obj["W2V2-VITS"][voice.get("id")][1]
        voice["id"] = self._voice_obj["W2V2-VITS"][voice.get("id")][0]
        sampling_rate = voice_obj.hps_ms.data.sampling_rate
        audio = voice_obj.get_audio(voice, auto_break=True)
        encoded_audio = self.encode(sampling_rate, audio, format)
        if getattr(config, "SAVE_AUDIO", False):
            path = f"{config.CACHE_PATH}/{fname}"
            utils.save_audio(encoded_audio.getvalue(), path)
        return encoded_audio

    def vits_voice_conversion(self, voice, fname):
        original_id = voice.get("original_id")
        target_id = voice.get("target_id")
        format = voice.get("format")

        original_id_obj = int(self._voice_obj["VITS"][original_id][2])
        target_id_obj = int(self._voice_obj["VITS"][target_id][2])

        if original_id_obj != target_id_obj:
            raise ValueError(f"speakers are in diffrent VITS Model")

        voice["original_id"] = int(self._voice_obj["VITS"][original_id][0])
        voice["target_id"] = int(self._voice_obj["VITS"][target_id][0])

        voice_obj = self._voice_obj["VITS"][original_id][1]
        sampling_rate = voice_obj.hps_ms.data.sampling_rate

        audio = voice_obj.voice_conversion(voice)
        encoded_audio = self.encode(sampling_rate, audio, format)
        if getattr(config, "SAVE_AUDIO", False):
            path = f"{config.CACHE_PATH}/{fname}"
            utils.save_audio(encoded_audio.getvalue(), path)
        return encoded_audio

    def get_dimensional_emotion_npy(self, audio):
        if self.dem is None:
            raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py")
        audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True)
        emotion = self.dem(audio16000, sampling_rate)['hidden_states']
        emotion_npy = BytesIO()
        np.save(emotion_npy, emotion.squeeze(0))
        emotion_npy.seek(0)

        return emotion_npy